-----------
今天讲讲 Union-Find 算法,也就是常说的并查集算法,主要是解决图论中「动态连通性」问题的。名词很高端,其实特别好理解,等会解释,另外这个算法的应用都非常有趣。
说起这个 Union-Find,应该算是我的「启蒙算法」了,因为《算法4》的开头就介绍了这款算法,可是把我秀翻了,感觉好精妙啊!后来刷了 LeetCode,并查集相关的算法题目都非常有意思,而且《算法4》给的解法竟然还可以进一步优化,只要加一个微小的修改就可以把时间复杂度降到 O(1)。
废话不多说,直接上干货,先解释一下什么叫动态连通性吧。
一、问题介绍
简单说,动态连通性其实可以抽象成给一幅图连线。比如下面这幅图,总共有 10 个节点,他们互不相连,分别用 0~9 标记:

现在我们的 Union-Find 算法主要需要实现这两个 API:
class UF {
/* 将 p 和 q 连接 */
public void union(int p, int q);
/* 判断 p 和 q 是否连通 */
public boolean connected(int p, int q);
/* 返回图中有多少个连通分量 */
public int count();
}
这里所说的「连通」是一种等价关系,也就是说具有如下三个性质:
1、自反性:节点p
和p
是连通的。
2、对称性:如果节点p
和q
连通,那么q
和p
也连通。
3、传递性:如果节点p
和q
连通,q
和r
连通,那么p
和r
也连通。
比如说之前那幅图,0~9 任意两个不同的点都不连通,调用connected
都会返回 false,连通分量为 10 个。
如果现在调用union(0, 1)
,那么 0 和 1 被连通,连通分量降为 9 个。
再调用union(1, 2)
,这时 0,1,2 都被连通,调用connected(0, 2)
也会返回 true,连通分量变为 8 个。

判断这种「等价关系」非常实用,比如说编译器判断同一个变量的不同引用,比如社交网络中的朋友圈计算等等。
这样,你应该大概明白什么是动态连通性了,Union-Find 算法的关键就在于union
和connected
函数的效率。那么用什么模型来表示这幅图的连通状态呢?用什么数据结构来实现代码呢?
二、基本思路
注意我刚才把「模型」和具体的「数据结构」分开说,这么做是有原因的。因为我们使用森林(若干棵树)来表示图的动态连通性,用数组来具体实现这个森林。
怎么用森林来表示连通性呢&#