陈文博
摘 要:在自动驾驶的感知系统中,图像传感器能够获取物体的类型、颜色等信息,相比其它传感器,信息更加丰富,但信息提取的难度较大。计算机视觉技术的出现为从图像数据里提取关键信息提供了基础。本文介绍了计算机视觉的概念和原理,阐述了其在自动驾驶中的应用现状,讨论了其当前面临的技术、传感器以及安全挑战,并给出针对性建议。
关键词:计算机视觉;自动驾驶;感知
中图分类号:TP391.41 文献标识码:A 文章编号:1671-2064(2019)03-0049-02
0 引言
自动驾驶汽车是汽车电子、智能控制以及互联网等技术发展融合的产物,汽车被发明不久,人们就有了设计自动驾驶汽车的想法,最早的自动驾驶汽车出现在上世纪20年代,采用无线电控制汽车的行进,与遥控汽车类似。随着信息技术的发展,自动驾驶汽车也逐渐走向成熟,与早期的无线电控制不同,汽车有了自主控制的功能。现如今,自动驾驶汽车是指能够利用其自身的感知系统获取车辆自身以及外界环境信息,经过计算系统分析信息、作出决策,控制执行系统实现车辆加速、减速或转向等操作,从而实现在无需驾驶员介入的情况下自主行驶的汽车[1]。为促进自动驾驶汽车与现有交通系统的融合,并鼓励自动驾驶技术的发展,联合国、美国、欧洲多国、亚洲多国均针对自动驾驶制定了多项相关政策,涉及道路测试、技术研发、配套交通等多个方面。
自动驾驶汽车中感知系统是其核心组成,感知系统利用传感器对环境中的人、车、物等进行检测、识别,为车辆决策提供数据支持。感知系统的输入设备包括光学摄像头、光学雷达(LiDAR)、微波雷达、导航系统等,其中光学摄像头由于其成本低、获取信息丰富等特点在自动