对数坐标归一化_数据归一化,标准化的几种方法

本文介绍了数据归一化和标准化的常见方法,包括最小-最大规范化、z-score规范化和小数定标规范化,并探讨了它们在神经网络中的应用和作用。归一化的主要目的是简化计算,加速网络训练的收敛性,同时保持数据的统计分布特性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

归一化方法(Normalization Method)

1。 把数变为(0,1)之间的小数

主要是为了数据处理方便提出来的,把数据映射到0~1范围之内处理,更加便捷快速,应该归到数字信号处理范畴之内。

2 。把有量纲表达式变为无量纲表达式

归一化是一种简化计算的方式,即将有量纲的表达式,经过变换,化为无量纲的表达式,成为纯量。

比如,复数阻抗可以归一化书写:Z = R + jωL = R(1 + jωL/R) ,复数部分变成了纯数量了,没有量纲。

另外,微波之中也就是电路分析、信号系统、电磁波传输等,有很多运算都可以如此处理,既保证了运算的便捷,又能凸现出物理量的本质含义。

标准化方法(Normalization Method)

数据的标准化是将数据按比例缩放,使之落入一个小的特定区间。由于信用指标体系的各个指标度量单位是不同的,为了能够将指标参与评价计算,需要对指标进行规范化处理,通过函数变换将其数值映射到某个数值区间。一般常用的有以下几种方法。

(1) 最小-最大规范化对原始数据进行线性变换。假定MaxA与MinA分别表示属性A的最大与最小值。最小最大规范化通过计算将属性A的值映射到区间[a, b]上的v。一般来说,将最小-最大规范化在用于信用指标数据上,常用的有以下两种函数形式:

a) 效益型指标(越大越好型)的隶属函数:

b) 成本型指标(越小越好型)的隶属函数:

(2) z-score规范化也称零-均值规范化。属性A的值是基于A的平均值与标准差规范化。

(3) 小数定标

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值