scaling之旅_专栏 | Detectron精读系列之一:学习率的调节和踩坑

本文介绍了Detectron库的学习率调节,包括Facebook的Linear Scaling Rule、Berkeley的LARS方法,以及Google对增大Batch Size的探讨。通过理论与实践,展示了如何在多GPU环境下加速训练并提高模型性能,同时分享了Detectron训练中的踩坑经验。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原标题:专栏 | Detectron精读系列之一:学习率的调节和踩坑

机器之心专栏

作者:huichan chen

大家期盼已久的 Detectron 终于开源啦,state-of-the-art 的模型就在一个命令行之间。但是面对庞大的 caffe2 和 detectron 函数库,多少会感觉有些迷茫。Detectron 精读系列会从细小的调参开始,到一些重要的函数分析,最后掌握 Detectron 函数库的全貌。在这个过程中,我们也会帮大家提前踩坑,希望大家可以从 Detectron 函数库学到更多通用的计算机视觉技能。

Detectron 函数库有一点复杂,在这次的解读中我们主要介绍 multi-gpu 训练的时候,学习率如何调节的问题。看似简单的问题,最近 Facebook,Google 和 Berkeley 多个组都发表了论文对这一问题进行了理论和实验的讨论,首先我们对这些论文的结果做一个简要的总结。三篇论文研究类似,但是每一篇相对于前一篇都有改进。

Facebook : Training Imagenet in 1 hour

贡献:

提出了 Linear Scaling Rule,当 Batch size 变为 K 倍时,Learning rate 需要乘以 K 就能够达到同样的训练结果。看似简单的定律,Facebook 的论文给出了不完整的理论解释和坚实的实验证明。除此之外,论文还讨论了如何处理 Batch Normalization 如何实现分布式 SGD。通过 Linear Scaling Rule,Facebook 成功的在一小时内训练了 Batch size 为 8192 的 Resnet 50。

缺陷:

当 Ba

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值