opencv+python初探SGBM算法

详情看论文或者大佬的博客吧,这里只是用python试一下。
代码:

import numpy as np
import cv2
from matplotlib import pyplot as plt

imgL = cv2.imread('/home/your/left/image')
imgR = cv2.imread('/home/your/right/image')

# disparity range tuning
window_size = 3
min_disp = 0
num_disp = 320 - min_disp

stereo = cv2.StereoSGBM_create(
    minDisparity=0,
    numDisparities=240,  # max_disp has to be dividable by 16 f. E. HH 192, 256
    blockSize=3,
    P1=8 * 3 * window_size ** 2,
    # wsize default 3; 5; 7 for SGBM reduced size image; 15 for SGBM full size image (1300px and above); 5 Works nicely
    P2=32 * 3 * window_size ** 2,
    disp12MaxDiff=1,
    uniquenessRatio=15,
    speckleWindowSize=0,
    speckleRange=2,
    preFilterCap=63,
    mode=cv2.STEREO_SGBM_MODE_SGBM_3WAY
)
disparity = stereo.compute(imgL, imgR).astype(np.float32) / 16.0
plt.imshow(disparity, 'gray')
plt.show()

图片:左
右
深度图

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值