【例3-3】(例3.6) 某工厂生产某种电器材料. 要检验原来使用的材料与一种新研制的材料的疲劳寿命有无显著性差异, 各取若干样品, 做疲劳寿命试验, 所得数据如下 (单位: 小时) :
原材料:
40, 110, 150, 65, 90, 210, 270,
新材料:
60, 150, 220, 310, 350, 250, 450, 110, 175.
一般认为, 材料的疲劳寿命服从对数正态分布, 并可以假定原材料疲劳寿命的对数 与新材料疲劳寿命的对数 有相同的方差, 即可设 , . 在显著性水平 下, 能否认为两种材料的疲劳寿命没有显著性差异?
>>
x=[40,110,150,65,90,210,270];
>>
y=[60,150,220,310,350,250,450,110,175];
>>
[h,sig,ci,tval]=ttest2(log(x),log(y),0.05,0)
h
= 0
sig
= 0.1001
ci
= -1.2655 0.1244
tval
= tstat:
-1.7609 df:
14
所以认为两种材料的疲劳寿命没有显著差异.
【例3-4】(例3.18) 对一台设备进行寿命试验, 记录10次无故障工作时间, 并从小到大排列得
420, 500, 920, 1380, 1510, 1650, 1760, 2100,2300,
2350
问此设备的无故障工作时间X的分布是否服从
的指数分布( )?
>> x=[420, 500, 920,
1380, 1510, 1650, 1760, 2100,2300, 2350];
>>
[h,p,ksstat,cv]=kstest(x,[x',expcdf(x',1500)],0.05,0)
h
= 0
p
= 0.2700
ksstat
= 0.3015
cv
= 0.4093
所以认为此设备的无故障工作时间X服从
的指数分布.
【例3-5】(例3.20) 在20天内, 从维尼纶正常生产时生产报表上看到的维尼纶纤度 (表示纤维粗细程度的一个量) 的情况, 有如下100个数据:
1.36, 1.49, 1.43, 1.41, 1.37, 1.40, 1.32, 1.42, 1.47, 1.39
1.41, 1.36, 1.40, 1.34, 1.42, 1.42, 1.45, 1.35, 1.42, 1.39
1.44, 1.42, 1.39, 1.42, 1.42, 1.30, 1.34, 1.42, 1.37, 1.36
1.37, 1.34, 1.37, 1.37, 1.44, 1.45, 1.32, 1.48, 1.40, 1.45
1.39, 1.46, 1.39, 1.53, 1.36, 1.48, 1.40, 1.39, 1.38, 1.40
1.36, 1.45, 1.50, 1.43, 1.38, 1.43, 1.41, 1.48, 1.39, 1.45
1.37, 1.37, 1.39, 1.45, 1.31, 1.41, 1.44, 1.44, 1.42, 1.47
1.35, 1.36, 1.39, 1.40, 1.38, 1.35, 1.42, 1.43, 1.42, 1.42
1.42, 1.40, 1.41, 1.37, 1.46, 1.36, 1.37, 1.27, 1.37, 1.38
1.42, 1.34, 1.43, 1.42, 1.41, 1.41, 1.44, 1.48, 1.55, 1.37
要求在显著性水平 下检验假设
其中F(x)为纤度的分布函数, 为标准正态分布函数.
>> x=[
1.36, 1.49, 1.43, 1.41, 1.37, 1.40, 1.32, 1.42, 1.47, 1.39...
1.41, 1.36, 1.40, 1.34, 1.42, 1.42, 1.45, 1.35, 1.42, 1.39...
1.44, 1.42, 1.39, 1.42, 1.42, 1.30, 1.34, 1.42, 1.37, 1.36...
1.37, 1.34, 1.37, 1.37, 1.44, 1.45, 1.32, 1.48, 1.40, 1.45...
1.39, 1.46, 1.39, 1.53, 1.36, 1.48, 1.40, 1.39, 1.38, 1.40...
1.36, 1.45, 1.50, 1.43, 1.38, 1.43, 1.41, 1.48, 1.39, 1.45...
1.37, 1.37, 1.39, 1.45, 1.31, 1.41, 1.44, 1.44, 1.42, 1.47...
1.35, 1.36,
1.39, 1.40, 1.38, 1.35, 1.42, 1.43, 1.42, 1.42...
1.42, 1.40, 1.41, 1.37, 1.46, 1.36, 1.37, 1.27, 1.37, 1.38...
1.42, 1.34, 1.43, 1.42, 1.41, 1.41, 1.44, 1.48, 1.55, 1.37];
%法一
(偏度峰度检验)
>> [h,p,jbstat,cv]=
jbtest(x,0.01)
h
= 0
p
= 0.4432
jbstat
= 1.6276
cv
= 9.2103
%法二
(Lilliefors检验)
>> [h,p,lstat,cv]=
lillietest(x,0.01)
h
= 0
p
= 0.0467
lstat
= 0.0904
cv
= 0.1103
所以不论是偏度峰度检验, 还是Lilliefors检验, 均认为维尼纶纤度服从正态分布.
【例3-6】(例3.23) 抽查用克矽平治疗的矽肺患者10名, 得他们治疗前后血红蛋白的差(g%)如下:
2.7, -1.2, -1.0, 0, 0.7, 2.0, 3.7, -0.6, 0.8, -0.3
试检验治疗前后血红蛋白的差是否服从正态分布( ).
>>
x=[2.7,-1.2,-1.0,0,0.7,.0,.7,-0.6,.8,-0.3];
>> [h,p,lstat,cv]=
lillietest(x,0.05)
%本题采用的是Lilliefors检验, 而非书上的W检验.
h
= 0
p
= NaN
lstat
= 0.1915
cv
= 0.2580
所以认为治疗前后血红蛋白的差服从正态分布.
【例3-7】(例3.25) 以下是两个地区所种小麦的蛋白质含量检验数据:
地区1: 12.6, 13.4, 11.9, 12.8, 13.0
地区2: 13.1, 13.4, 12.8,
13.5, 13.3, 12.7, 12.4
问两地区小麦的蛋白质含量有无显著性差异( )?
>>
x=[12.6,13.4,11.9,12.8,13.0];
>>
y=[13.1,13.4,12.8,13.5,13.3,12.7,12.4];
>> [p,h,stats] =
ranksum(x,y,0.05) %秩和检验
p
= 0.4066
h
= 0
stats
= ranksum:
27
>>
h=kstest2(x,y,0.05) %斯米尔乐夫检验
h
= 0
所以不论是秩和检验还是斯米尔乐夫检验, 均认为两地区小麦的蛋白质含量无显著差异.
【例3-8】试用正态概率纸、qq图、偏度峰度检验及Lilliefors检验下面这批数据是否来自正态分布.
0.05
4.29
5.22
6.10
6.93
6.96
11.11
11.78
14.18
16.12
16.53
19.43
26.15
26.59
28.06
35.40
39.64
40.63
51.43
56.79
57.62
64.99
69.63
78.73
98.07
98.11
98.84
114.16
123.62
124.20
125.12
133.10
138.15
145.12
155.12
156.41
161.02
203.27
203.30
210.44
14.51
228.69
234.95
251.246
260.79
272.85
276.26
300.59
301.50
306.54
(注: 这批数据实际上是来自参数为100的指数分布)
·编写命令文件addexample3_1.m:
%几种正态分布检验方法的比较
x=[0.05,4.29,5.22,6.10,6.93,6.96,11.11,11.78,14.18,16.12...
16.53,19.43,26.15,26.59,28.06,35.40,39.64,40.63,51.43,56.79...
57.62,64.99,69.63,78.73,98.07,98.11,98.84,114.16,123.62,124.20...
125.12,133.10,138.15,145.12,155.12,156.41,161.02,203.27,203.30,210.44...
14.51,228.69,234.95,251.246,260.79,272.85,276.26,300.59,301.50,306.54];
normplot(x)
pause
qqplot(x)
[h_jbtest,p,jbstat,cv]=jbtest(x,0.05) %偏度峰度检验
[h_lillitest,p,lstat,cv]=
lillietest(x,0.05)%Lillifors检验
·运行命令文件addexample3_1.m:
>>
addexample3_1
h_jbtest
= 0
p
= 0.0742
jbstat
= 5.2014
cv
= 5.9915
h_lillitest
= 1
p
= 0.0288
lstat
= 0.1416
cv
= 0.1253
所以由正态概率纸、qq图、偏度峰度检验及Lilliefors检验均认为这批数据不是来自正态分布.