ruoyi 整合 Sharding-Jdbc项目

1.项目部署启动

项目获取:

https://pan.baidu.com/s/1qT__oI3oLfI77Dnj76-iIQ
提取码:yapx

数据库配置:

在这里插入图片描述

order测试数据表:

/*
 Navicat Premium Data Transfer

 Source Server         : 192.168.168.110
 Source Server Type    : MySQL
 Source Server Version : 80020 (8.0.20)
 Source Host           : 192.168.168.110:3306
 Source Schema         : ry-order1

 Target Server Type    : MySQL
 Target Server Version : 80020 (8.0.20)
 File Encoding         : 65001

 Date: 17/03/2025 11:11:04
*/

SET NAMES utf8mb4;
SET FOREIGN_KEY_CHECKS = 0;

-- ----------------------------
-- Table structure for sys_order_0
-- ----------------------------
DROP TABLE IF EXISTS `sys_order_0`;
CREATE TABLE `sys_order_0`  (
  `order_id` bigint NOT NULL,
  `user_id` bigint NULL DEFAULT NULL,
  `status` varchar(20) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL DEFAULT NULL,
  `order_no` varchar(50) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL DEFAULT NULL,
  PRIMARY KEY (`order_id`) USING BTREE
) ENGINE = InnoDB AUTO_INCREMENT = 3 CHARACTER SET = utf8mb4 COLLATE = utf8mb4_general_ci ROW_FORMAT = Dynamic;

-- ----------------------------
-- Records of sys_order_0
-- ----------------------------
INSERT INTO `sys_order_0` VALUES (2, 2, '0', '7475da971fdc4a31a9d8802c3b29b605');

SET FOREIGN_KEY_CHECKS = 1;

2.配置说明

common模块

public enum DataSourceType {
    /** 主库 */
    MASTER,

    /** 从库 */
    SLAVE,

    /** 分库分表 */
    SHARDING
}

sharding-jdbc配置类

package com.ruoyi.framework.config;

import com.alibaba.druid.pool.DruidDataSource;
import com.alibaba.druid.spring.boot.autoconfigure.DruidDataSourceBuilder;
import com.alibaba.druid.spring.boot.autoconfigure.properties.DruidStatProperties;
import com.alibaba.druid.util.Utils;
import com.ruoyi.common.enums.DataSourceType;
import com.ruoyi.common.utils.spring.SpringUtils;
import com.ruoyi.framework.config.properties.DruidProperties;
import com.ruoyi.framework.datasource.DynamicDataSource;
import org.springframework.boot.autoconfigure.condition.ConditionalOnProperty;
import org.springframework.boot.context.properties.ConfigurationProperties;
import org.springframework.boot.web.servlet.FilterRegistrationBean;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.context.annotation.Primary;

import javax.servlet.*;
import javax.sql.DataSource;
import java.io.IOException;
import java.util.HashMap;
import java.util.Map;

/**
 * druid 配置多数据源
 * 
 * @author ruoyi
 */
@Configuration
public class DruidConfig
{
    @Bean
    @ConfigurationProperties("spring.datasource.druid.master")
    public DataSource masterDataSource(DruidProperties druidProperties)
    {
        DruidDataSource dataSource = DruidDataSourceBuilder.create().build();
        return druidProperties.dataSource(dataSource);
    }

    @Bean
    @ConfigurationProperties("spring.datasource.druid.slave")
    @ConditionalOnProperty(prefix = "spring.datasource.druid.slave", name = "enabled", havingValue = "true")
    public DataSource slaveDataSource(DruidProperties druidProperties)
    {
        DruidDataSource dataSource = DruidDataSourceBuilder.create().build();
        return druidProperties.dataSource(dataSource);
    }
    
    @Bean(name = "dynamicDataSource")
    @Primary
    public DynamicDataSource dataSource(DataSource masterDataSource)
    {
        Map<Object, Object> targetDataSources = new HashMap<>();
        targetDataSources.put(DataSourceType.MASTER.name(), masterDataSource);
        setDataSource(targetDataSources, DataSourceType.SLAVE.name(), "slaveDataSource");
        setDataSource(targetDataSources, DataSourceType.SHARDING.name(), "shardingDataSource");
        return new DynamicDataSource(masterDataSource, targetDataSources);
    }

    /**
     * 设置数据源
     * 
     * @param targetDataSources 备选数据源集合
     * @param sourceName 数据源名称
     * @param beanName bean名称
     */
    public void setDataSource(Map<Object, Object> targetDataSources, String sourceName, String beanName)
    {
        try
        {
            DataSource dataSource = SpringUtils.getBean(beanName);
            targetDataSources.put(sourceName, dataSource);
        }
        catch (Exception e)
        {
        }
    }

    /**
     * 去除监控页面底部的广告
     */
    @SuppressWarnings({ "rawtypes", "unchecked" })
    @Bean
    @ConditionalOnProperty(name = "spring.datasource.druid.statViewServlet.enabled", havingValue = "true")
    public FilterRegistrationBean removeDruidFilterRegistrationBean(DruidStatProperties properties)
    {
        // 获取web监控页面的参数
        DruidStatProperties.StatViewServlet config = properties.getStatViewServlet();
        // 提取common.js的配置路径
        String pattern = config.getUrlPattern() != null ? config.getUrlPattern() : "/druid/*";
        String commonJsPattern = pattern.replaceAll("\\*", "js/common.js");
        final String filePath = "support/http/resources/js/common.js";
        // 创建filter进行过滤
        Filter filter = new Filter()
        {
            @Override
            public void init(javax.servlet.FilterConfig filterConfig) throws ServletException
            {
            }

            @Override
            public void doFilter(ServletRequest request, ServletResponse response, FilterChain chain)
                    throws IOException, ServletException
            {
                chain.doFilter(request, response);
                // 重置缓冲区,响应头不会被重置
                response.resetBuffer();
                // 获取common.js
                String text = Utils.readFromResource(filePath);
                // 正则替换banner, 除去底部的广告信息
                text = text.replaceAll("<a.*?banner\"></a><br/>", "");
                text = text.replaceAll("powered.*?shrek.wang</a>", "");
                response.getWriter().write(text);
            }

            @Override
            public void destroy()
            {
            }
        };
        FilterRegistrationBean registrationBean = new FilterRegistrationBean();
        registrationBean.setFilter(filter);
        registrationBean.addUrlPatterns(commonJsPattern);
        return registrationBean;
    }
}

分库,分表实现

package com.ruoyi.framework.config;

import java.sql.SQLException;
import java.util.HashMap;
import java.util.Map;
import java.util.Properties;
import javax.sql.DataSource;
import org.apache.shardingsphere.api.config.sharding.KeyGeneratorConfiguration;
import org.apache.shardingsphere.api.config.sharding.ShardingRuleConfiguration;
import org.apache.shardingsphere.api.config.sharding.TableRuleConfiguration;
import org.apache.shardingsphere.api.config.sharding.strategy.InlineShardingStrategyConfiguration;
import org.apache.shardingsphere.shardingjdbc.api.ShardingDataSourceFactory;
import org.springframework.beans.factory.annotation.Qualifier;
import org.springframework.boot.autoconfigure.condition.ConditionalOnProperty;
import org.springframework.boot.context.properties.ConfigurationProperties;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import com.alibaba.druid.pool.DruidDataSource;
import com.alibaba.druid.spring.boot.autoconfigure.DruidDataSourceBuilder;
import com.ruoyi.framework.config.properties.DruidProperties;

/**
 * sharding 配置信息
 * 
 * @author ruoyi
 */
@Configuration
public class ShardingDataSourceConfig
{
    @Bean
    @ConfigurationProperties("spring.datasource.druid.order1")
    @ConditionalOnProperty(prefix = "spring.datasource.druid.order1", name = "enabled", havingValue = "true")
    public DataSource order1DataSource(DruidProperties druidProperties)
    {
        DruidDataSource dataSource = DruidDataSourceBuilder.create().build();
        return druidProperties.dataSource(dataSource);
    }

    @Bean
    @ConfigurationProperties("spring.datasource.druid.order2")
    @ConditionalOnProperty(prefix = "spring.datasource.druid.order2", name = "enabled", havingValue = "true")
    public DataSource order2DataSource(DruidProperties druidProperties)
    {
        DruidDataSource dataSource = DruidDataSourceBuilder.create().build();
        return druidProperties.dataSource(dataSource);
    }
    
    @Bean(name = "shardingDataSource")
    public DataSource shardingDataSource(@Qualifier("order1DataSource") DataSource order1DataSource, @Qualifier("order2DataSource") DataSource order2DataSource) throws SQLException
    {
        Map<String, DataSource> dataSourceMap = new HashMap<>();
        dataSourceMap.put("order1", order1DataSource);
        dataSourceMap.put("order2", order2DataSource);

        // sys_order 表规则配置
        TableRuleConfiguration orderTableRuleConfig = new TableRuleConfiguration("sys_order", "order$->{1..2}.sys_order_$->{0..1}");
        // 配置分库策略 
        orderTableRuleConfig.setDatabaseShardingStrategyConfig(new InlineShardingStrategyConfiguration("user_id", "order$->{user_id % 2 + 1}"));
        // 配置分表策略
        orderTableRuleConfig.setTableShardingStrategyConfig(new InlineShardingStrategyConfiguration("order_id", "sys_order_$->{order_id % 2}"));
        // 分布式主键
        orderTableRuleConfig.setKeyGeneratorConfig(new KeyGeneratorConfiguration("SNOWFLAKE", "order_id"));

        // 配置分片规则
        ShardingRuleConfiguration shardingRuleConfig = new ShardingRuleConfiguration();
        shardingRuleConfig.getTableRuleConfigs().add(orderTableRuleConfig);
        // 获取数据源对象
        DataSource dataSource = ShardingDataSourceFactory.createDataSource(dataSourceMap, shardingRuleConfig, getProperties());
        return dataSource;
    }

    /**
     * 系统参数配置
     */
    private Properties getProperties()
    {
        Properties shardingProperties = new Properties();
        shardingProperties.put("sql.show", true);
        return shardingProperties;
    }
}

3.学习总结

分库分表策略

需要分表的表有:kg_order_info(订单数据表)与kg_upload_file(文件表)
kg_order_info
根据businessDate字段来根据时间进行动态分表
按时businessDate来判断对应的年份及季度, 按照kg_order_info_年_季度分表
例如 businessDate 为 2023-06-12 14:00:00 时, 分表策略查询的表为kg_order_info_2023_2这张表
历史数据处理, 如果businessDate时间早于2023年, 则统一插入或查询kg_order_info_2023_1这张表
所有查询条件都需要带上businessDate这个参数, 不论是范围查询还是精确查询
目前分表时间暂定为2023年至2050年
表主键ID通过雪花算法生成, 便于后续根据id推算出日期, 由于5月11号开始上线, 早期数据统一放入kg_order_info_2023_2这张表
数据库编写存储过程, 每三个月动态创建定时创建下一年当前季度对应表结构
kg_upload_file
根据雪花算法主键id来进行动态分表
根据id反推出生成id的时间, 根据时间来判断对应的年份及季度, 按照kg_upload_file_年_季度分表
当id为早期数据时, 反推时间失败的情况下, 统一查询kg_upload_file_2023_1这张表
该表只会有根据id精准查询情况
目前分表时间暂定为2023年至2050年
数据库编写存储过程, 每三个月动态创建定时创建下一年当前季度对应表结构

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值