我的这个简单神经网络包括两个中间隐层,激励函数用的是sigmoid
首先需要导入必要的包:
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data
然后获取mnist数据集:通过mnist下的一个input_data.read_data_sets
mnist = input_data.read_data_sets('data/', one_hot=True) #此处注意one_hot需要指定,不然在后边在进行矩阵运算时会报错 n_hidden_1 = 256 n_hidden_2 = 128 n_input = 784 n_classes = 10
定义一些参数,包括两个隐层和输入的特征个数,以及分类个数(10)
n_hidden_1 =256 n_hidden_2 = 128 n_input = 784 n_classes = 10
#定义x,y x = tf.placeholder(tf.float32,[None,n_input]) y = tf.placeholder(tf.float32,[None,n_classes])
stddev = 0.1 weights = { 'w1':tf.Variable(tf.random_normal([n_input,n_hidden_1],stddev=stddev)), 'w2':tf.Variable(tf.random_normal([n_hidden_1,n_hidden_2],stddev=stddev)), 'out':tf.Variable(tf.random_normal([n_hidden_2,n_classes],stddev=stddev)), } biases = { 'b1':tf.Variable(tf.random_normal([n_hidden_1])), 'b2':tf.Variable(tf.random_normal([n_hidden_2])), 'out':tf.Variable(tf.random_normal([n_classes])) }
定义前向传播函数:(有关什么是前向传播和反向传播相关知识请看这里:)https://mp.youkuaiyun.com/postedit/80849187
def forward_propagation(_X, _weights, _biases): layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(_X, _weights['w1']), _biases['b1'])) layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, _weights['w2']), _biases['b2'])) return (tf.matmul(layer_2, _weights['out']) + _biases['out'])
预测
pred = forward_propagation(x,weights,biases)
通过交叉熵来定义损失函数:,优化器(采用梯度下降):交叉熵概念请看:https://mp.youkuaiyun.com/postedit/80858789
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits= pred,labels= y)) optimizer = tf.train.GradientDescentOptimizer(0.3) train = optimizer.minimize(cost) corr = tf.equal(tf.arg_max(pred,1),tf.arg_max(y,1)) accr = tf.reduce_mean(tf.cast(corr,'float'))
init_op = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init_op) train_epochs = 6 batch_size = 64 train_step = 2 avg_cost = 0 for epoch in range(train_epochs): num_batch = int(mnist.train.num_examples/batch_size)+1 batch_example,batch_label = mnist.train.next_batch(batch_size) print(batch_label.shape,batch_example.shape) for i in range(num_batch): feed_seed = {x:batch_example,y:batch_label} sess.run(train,feed_dict=feed_seed) avg_cost += sess.run(cost,feed_dict=feed_seed) avg_cost = avg_cost/num_batch if (epoch+1) % train_step ==0: feed_train = {x:batch_example,y:batch_label} feed_test = {x:test_img,y:test_label} print('train accr:%f'%sess.run(accr,feed_dict=feed_train)) print('test accr:%f'%sess.run(accr,feed_dict=feed_test)) print('avg_cost:%f'%avg_cost)