langchain V2.0 一些代码块收录

1.加载本地ollama模型:

#pip install langchain==0.2.16
#pip install langchain_community==0.2.16
#加载本地大模型代码快
from langchain_community.llms import Ollama
model = Ollama(model="qwen1_5-4b-chat-q2_k")

2.加载并配置pg向量数据库:

#pip install -qU langchain-postgres -i https://pypi.tuna.tsinghua.edu.cn/simple
from langchain_postgres import PGVector
from langchain_postgres.vectorstores import PGVector

CONNECTION_STRING = "postgresql+psycopg2://postgres:qaz142434@192.168.159.130:5432/postgres"

# 矢量存储名
COLLECTION_NAME = "state_of_the_union_test"
# 建立索引库
vector = PGVector.from_documents(
    embedding=embeddings,
    documents=docs,
    collection_name=COLLECTION_NAME,
    connection=CONNECTION_STRING,
    use_jsonb=True,
    pre_delete_collection=True,
)

3.切分网络资源为数据块:

import bs4


import os
#解决WebBaseLoader 报错 (USER_AGENT environment variable not set, consider setting it to identify your requests)
os.environ['USER_AGENT'] = 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3'
from langchain_community.document_loaders import WebBaseLoader
from langchain_text_splitters import RecursiveCharacterTextSplitter

# 切分网络资源为数据块.
loader = WebBaseLoader(
    web_paths=("https://lilianweng.github.io/posts/2023-06-23-agent/",),
    bs_kwargs=dict(
        parse_only=bs4.SoupStrainer(
            class_=("post-content", "post-title", "post-header")
        )
    ),
)
document = loader.load()

text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
docs = text_splitter.split_documents(document)

4.加载嵌入ollama模型:

#pip install langchain_ollama -i https://pypi.tuna.tsinghua.edu.cn/simple
from langchain_ollama import OllamaEmbeddings
embeddings = OllamaEmbeddings(model="lrs33/bce-embedding-base_v1",base_url="http://localhost:11434/")

5.输出暂时搁置之后会以评论形式贴上 流式输出代码:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值