几种哈希函数的比较

基本概念
所谓完美哈希函数,就是指没有冲突的哈希函数,即对任意的 key1 != key2 有h(key1) != h(key2)。
设定义域为X,值域为Y, n=|X|,m=|Y|,那么肯定有m>=n,如果对于不同的key1,key2属于X,有h(key1)!=h(key2),那么称h为完美哈希函数,当m=n时,h称为最小完美哈希函数(这个时候就是一一映射了)。

在处理大规模字符串数据时,经常要为每个字符串分配一个整数ID。这就需要一个字符串的哈希函数。怎么样找到一个完美的字符串hash函数呢?
有一些常用的字符串hash函数。像BKDRHash,APHash,DJBHash,JSHash,RSHash,SDBMHash,PJWHash,ELFHash等等。都是比较经典的。

下面是转载的对几个常用字符串hash函数的分析:
http://www.cnblogs.com/atlantis13579/archive/2010/02/06/1664792.html

常用的字符串Hash函数还有ELFHash,APHash等等,都是十分简单有效的方法。这些函数使用位运算使得每一个字符都对最后的函数值产生影响。另外还有以MD5和SHA1为代表的杂凑函数,这些函数几乎不可能找到碰撞。

常用字符串哈希函数有 BKDRHash,APHash,DJBHash,JSHash,RSHash,SDBMHash,PJWHash,ELFHash等等。对于以上几种哈希函数,我对其进行了一个小小的评测。

Hash函数数据1数据2数据3数据4数据1得分数据2得分数据3得分数据4得分平均分
BKDRHash20477448196.5510090.9582.0592.64
APHash23475449396.5588.4610051.2886.28
DJBHash22497547496.5592.31010083.43
JSHash14476150610084.6296.8317.9581.94
RSHash10486150510010051.5820.5175.96
SDBMHash32484950493.192.3157.0123.0872.41
PJWHash302648785130043.89021.95
ELFHash302648785130043.89021.95

其中数据1为100000个字母和数字组成的随机串哈希冲突个数。数据2为100000个有意义的英文句子哈希冲突个数。数据3为数据1的哈希值与 1000003(大素数)求模后存储到线性表中冲突的个数。数据4为数据1的哈希值与10000019(更大素数)求模后存储到线性表中冲突的个数。

经过比较,得出以上平均得分。平均数为平方平均数。可以发现,BKDRHash无论是在实际效果还是编码实现中,效果都是最突出的。APHash也是较为优秀的算法。DJBHash,JSHash,RSHash与SDBMHash各有千秋。PJWHash与ELFHash效果最差,但得分相似,其算法本质是相似的。

unsigned int SDBMHash(char *str)
{
    unsigned int hash = 0;
 
    while (*str)
    {
        // equivalent to: hash = 65599*hash + (*str++);
        hash = (*str++) + (hash << 6) + (hash << 16) - hash;
    }
 
    return (hash & 0x7FFFFFFF);
}
 
// RS Hash Function
unsigned int RSHash(char *str)
{
    unsigned int b = 378551;
    unsigned int a = 63689;
    unsigned int hash = 0;
 
    while (*str)
    {
        hash = hash * a + (*str++);
        a *= b;
    }
 
    return (hash & 0x7FFFFFFF);
}
 
// JS Hash Function
unsigned int JSHash(char *str)
{
    unsigned int hash = 1315423911;
 
    while (*str)
    {
        hash ^= ((hash << 5) + (*str++) + (hash >> 2));
    }
 
    return (hash & 0x7FFFFFFF);
}
 
// P. J. Weinberger Hash Function
unsigned int PJWHash(char *str)
{
    unsigned int BitsInUnignedInt = (unsigned int)(sizeof(unsigned int) * 8);
    unsigned int ThreeQuarters    = (unsigned int)((BitsInUnignedInt  * 3) / 4);
    unsigned int OneEighth        = (unsigned int)(BitsInUnignedInt / 8);
    unsigned int HighBits         = (unsigned int)(0xFFFFFFFF) << (BitsInUnignedInt - OneEighth);
    unsigned int hash             = 0;
    unsigned int test             = 0;
 
    while (*str)
    {
        hash = (hash << OneEighth) + (*str++);
        if ((test = hash & HighBits) != 0)
        {
            hash = ((hash ^ (test >> ThreeQuarters)) & (~HighBits));
        }
    }
 
    return (hash & 0x7FFFFFFF);
}
 
// ELF Hash Function
unsigned int ELFHash(char *str)
{
    unsigned int hash = 0;
    unsigned int x    = 0;
 
    while (*str)
    {
        hash = (hash << 4) + (*str++);
        if ((x = hash & 0xF0000000L) != 0)
        {
            hash ^= (x >> 24);
            hash &= ~x;
        }
    }
 
    return (hash & 0x7FFFFFFF);
}
 
// BKDR Hash Function
unsigned int BKDRHash(char *str)
{
    unsigned int seed = 131; // 31 131 1313 13131 131313 etc..
    unsigned int hash = 0;
 
    while (*str)
    {
        hash = hash * seed + (*str++);
    }
 
    return (hash & 0x7FFFFFFF);
}
 
// DJB Hash Function
unsigned int DJBHash(char *str)
{
    unsigned int hash = 5381;
 
    while (*str)
    {
        hash += (hash << 5) + (*str++);
    }
 
    return (hash & 0x7FFFFFFF);
}
 
// AP Hash Function
unsigned int APHash(char *str)
{
    unsigned int hash = 0;
    int i;
 
    for (i=0; *str; i++)
    {
        if ((i & 1) == 0)
        {
            hash ^= ((hash << 7) ^ (*str++) ^ (hash >> 3));
        }
        else
        {
            hash ^= (~((hash << 11) ^ (*str++) ^ (hash >> 5)));
        }
    }
 
    return (hash & 0x7FFFFFFF);
}

 

转载于:https://www.cnblogs.com/linda-fcj/p/7362099.html

### 常见哈希函数的分类及应用场景 #### 加密哈希函数 加密哈希函数通常用于需要高度安全性的场景,例如密码存储、数字签名以及数据完整性验证。这类函数的特点是输出固定长度的结果,并且具备不可逆性和抗碰撞性。常见的加密哈希算法有 MD5、SHA-1 和 SHA-256 等[^2]。 - **MD5**: 虽然计算速度快,但由于存在较多的安全漏洞,在现代应用中已逐渐被淘汰。 - **SHA-1**: 曾经被广泛使用,但现在也被认为不够安全,仅适用于一些低敏感度的需求。 - **SHA-256/SHA-3**: 这些算法被认为是当前最安全的选择之一,适合于高安全性需求的应用场合,比如金融交易中的身份认证和电子合同签署等[^3]。 #### 非加密哈希函数 非加密哈希函数主要用于性能优先而对安全性要求较低的情况,如快速查找、缓存键生成或者分布式系统的负载均衡等方面。它们往往追求更高的效率而非绝对的安全保障。 - **MurmurHash**: 设计上注重速度与分布均匀性之间的平衡,非常适合大数据量下的索引构建任务。 - **xxHash**: 提供极高的运行速率同时保持良好的随机特性,常应用于实时流媒体处理或内存数据库领域内作为辅助工具。 #### 特殊用途哈希函数 除了上述两大类之外还有一些专门为特定目的定制开发出来的特殊形式: - **布隆过滤器专用哈希**:为了支持高效集合成员测试操作设计而成;尽管单次查询结果可能存在误判概率,但在节省空间方面表现优异。 综上所述,不同类型的哈希函数因其独特的性质决定了各自最佳适应范围,使用者应当依据项目实际情况合理选用相应方案以满足功能需求并兼顾系统效能最大化目标[^1]。 ```python import hashlib # 示例代码展示如何创建一个简单的SHA-256哈希对象 def create_sha256_hash(data): sha256_obj = hashlib.sha256() sha256_obj.update(data.encode('utf-8')) return sha256_obj.hexdigest() print(create_sha256_hash("example")) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值