NIPS 2016精选论文

本文精选NIPS 2016五篇重要论文,涵盖Active Memory与Attention机制、Stein Variational Gradient Descent、Coresets在Bayesian Logistic Regression中的应用、Data Programming快速创建训练集以及残差网络的集成学习解释。通过这些论文,深入理解深度学习和概率推理的最新进展。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

人工智能和机器学习的顶级会议 Neural Information Processing Systems 2016 (NIPS 2016)12月已经在西班牙的巴塞罗那圆满举行。因为 NIPS 的论文涵盖主题非常广泛,所以一般读者很难从浩如烟海的文献中即刻抓取到有用信息。同时,读到有价值的信息需要专业知识和不少时间投入。在本文中,继续上一期,笔者精选出5篇有意思的文章,为读者解惑。

Can Active Memory Replace Attention

概要:Active Memory 能够替代 Attention 吗?本文想要探讨这样的话题。不过,从结果看,答案是,不能。

这篇文章来自 Google Brain 的 Lukasz Kaiser 和 Samy Bengio。文章的主旨是想使用一种叫做 Active Memory 的机制来替代 Attention 机制。文章通过扩展第一作者在 ICLR 2016提出的一个 Neural-GPU 模型,使其拥有 Active Memory 的能力并且叫做 Extended-Neural GPU,通过机器翻译来展现该机制可与 Attention 匹敌。不过,读者们需要注意,文中提出的 Active Memory 机制主要基于 Convolution Operator,是否能够扩展到其他模型,还需要

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值