快速幂取模(O(logn)算法

本文详细介绍了快速幂取模算法的基本原理及其实现过程。快速幂取模算法是一种高效的大数运算方法,用于求解大数的幂次取模问题,通过递归分解将时间复杂度降低至O(log b)。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

所谓的快速幂,实际上是快速幂取模的缩写,简单的说,就是快速的求一个幂式的模(余)。在程序设计过程中,经常要去求一些大数对于某个数的余数,为了得到更快、计算范围更大的算法,产生了快速幂取模算法。[有读者反映在讲快速幂部分时有点含糊,所以在这里对本文进行了修改,作了更详细的补充,争取让更多的读者一目了然]

ab mod c = (a mod c)b mod c

ab mod c = (a2)b/2 mod c , b为偶数 

ab mod c = ((a2)b/2·a) mod c , b为奇数


我们先从简单的例子入手:求= 几。

算法1.首先直接地来设计这个算法:

[cpp]  view plain  copy
  1. int ans = 1;  
  2. for(int i = 1;i<=b;i++)  
  3. {  
  4. ans = ans * a;  
  5. }  
  6. ans = ans % c;  


这个算法的时间复杂度体现在for循环中,为Ob.这个算法存在着明显的问题,如果a和b过大,很容易就会溢出。

那么,我们先来看看第一个改进方案:在讲这个方案之前,要先有这样一个公式:

.这个公式大家在离散数学或者数论当中应该学过,不过这里为了方便大家的阅读,还是给出证明:

引理1:

上面公式为下面公式的引理,即积的取余等于取余的积的取余。

证明了以上的公式以后,我们可以先让a关于c取余,这样可以大大减少a的大小,

于是不用思考的进行了改进:

算法2:

[cpp]  view plain  copy
  1. int ans = 1;  
  2. a = a % c; //加上这一句  
  3. for(int i = 1;i<=b;i++)  
  4. {  
  5. ans = ans * a;  
  6. }  
  7. ans = ans % c;  


聪明的读者应该可以想到,既然某个因子取余之后相乘再取余保持余数不变,那么新算得的ans也可以进行取余,所以得到比较良好的改进版本。

算法3:

[cpp]  view plain  copy
  1. int ans = 1;  
  2. a = a % c; //加上这一句  
  3. for(int i = 1;i<=b;i++)  
  4. {  
  5. ans = (ans * a)% c;//这里再取了一次余  
  6.    
  7. }  
  8. ans = ans % c;  


这个算法在时间复杂度上没有改进,仍为O(b),不过已经好很多的,但是在c过大的条件下,还是很有可能超时,所以,我们推出以下的快速幂算法

快速幂算法依赖于以下明显的公式,我就不证明了。

有了上述两个公式后,我们可以得出以下的结论:

1.如果b是偶数,我们可以记k = a2mod c,那么求(k)b/2 mod c就可以了。

2.如果b是奇数,我们也可以记k =a2 mod c,那么求

((k)b/2 mod c × a ) mod c =((k)b/2 mod c * a) mod c 就可以了。

 

那么我们可以得到以下算法:

算法4:

[cpp]  view plain  copy
  1. int ans = 1;  
  2. a = a % c;  
  3. if(b%2==1)  
  4. ans = (ans *a) mod c; //如果是奇数,要多求一步,可以提前算到ans中  
  5. k = (a*a) % c; //我们取a2而不是a  
  6. for(int i = 1;i<=b/2;i++)  
  7. {  
  8. ans = (ans *k) % c;  
  9. }  
  10. ans = ans % c;  


 

我们可以看到,我们把时间复杂度变成了O(b/2).当然,这样子治标不治本。但我们可以看到,当我们令k = (a * a)mod c时,状态已经发生了变化,我们所要求的最终结果即为(k)b/2 mod c而不是原来的ab mod c,所以我们发现这个过程是可以迭代下去的。当然,对于奇数的情形会多出一项a mod c,所以为了完成迭代,当b是奇数时,我们通过

ans = (ans * a) % c;来弥补多出来的这一项,此时剩余的部分就可以进行迭代了。

 

形如上式的迭代下去后,当b=0时,所有的因子都已经相乘,算法结束。于是便可以在Olog b的时间内完成了。于是,有了最终的算法:快速幂算法。

算法5:快速幂算法

 

[cpp]  view plain  copy
  1. int ans = 1;  
  2. a = a % c;  
  3. while(b>0)  
  4. {  
  5.    
  6. if(b % 2 == 1)  
  7. ans = (ans * a) % c;  
  8. b = b/2;  
  9. a = (a * a) % c;  
  10. }  


将上述的代码结构化,也就是写成函数:

[cpp]  view plain  copy
  1. int PowerMod(int a, int b, int c)  
  2. {  
  3. int ans = 1;  
  4. a = a % c;  
  5. while(b>0)  
  6. {  
  7.    
  8. if(b % 2 = = 1)  
  9. ans = (ans * a) % c;  
  10. b = b/2;  
  11. a = (a * a) % c;  
  12. }  
  13. return ans;  
  14. }  


本算法的时间复杂度为Ologb),能在几乎所有的程序设计(竞赛)过程中通过,是目前最常用的算法之一。


By  夜せ︱深


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值