深究ReentrantLock源码及其使用方法(一)

深究ReentrantLock源码及其使用方法

1.先附上ReentrantLock类的源码,然后再进行一行一行分析

/*jadclipse*/// Decompiled by Jad v1.5.8g. Copyright 2001 Pavel Kouznetsov.
// Jad home page: http://www.kpdus.com/jad.html
// Decompiler options: packimports(3) radix(10) lradix(10) 

package java.util.concurrent.locks;

import java.io.*;
import java.util.Collection;
import java.util.concurrent.TimeUnit;

// Referenced classes of package java.util.concurrent.locks:
//            AbstractQueuedSynchronizer, Lock, Condition

//在ReentrantLock类中有三个内部类,分别是FairSync、NoFairSync、Sync;
//其中FairSync和NoFairSync是静态内部类、Sync是抽象内部类
public class ReentrantLock
    implements Lock, Serializable
{
//该类是公平锁的
    static final class FairSync extends Sync
    {
		//锁方法
        final void lock()
        {
        //以独占模式获取,忽略中断。 通过调用至少一次tryAcquire(int)实现,成功返回。 否则线程排队,可能会重复阻塞和解除阻塞,直到成功才调用tryAcquire(int) 
            acquire(1);
        }
        
//尝试以独占模式获取。 该方法应该查询对象的状态是否允许以独占模式获取,如果是,则获取它。 该方法总是由执行获取的线程调用。 如果此方法报告失败,则获取方法可能将线程排队(如果尚未排队),直到被其他线程释放为止
        protected final boolean tryAcquire(int i)
        {
        	//得到当前的线程
            Thread thread = Thread.currentThread();
            //获取线程状态
            int j = getState();
            if(j == 0)
            {
            //进行CAS,如果成功则独占成功,然后返回true
                if(!hasQueuedPredecessors() && compareAndSetState(0, i))
                {
                    setExclusiveOwnerThread(thread);
                    return true;
                }
            } else if(thread == getExclusiveOwnerThread())//如果当前的线程就是本身,则更新线程状态
            {
                int k = j + i;
                if(k < 0)
                {
                    throw new Error("Maximum lock count exceeded");
                } else
                {
                    setState(k);
                    return true;
                }
            }
            return false;
        }

        private static final long serialVersionUID = -3000897897090466540L;

        FairSync()
        {
        }
    }

    static final class NonfairSync extends Sync
    {

        final void lock()
        {
            if(compareAndSetState(0, 1))//表示如果当前的状态state为0时,把state设为1,并返回true,然后把当前线程加到等待的线程队列中;如果返回false,则调用acquire(1)方法。
                setExclusiveOwnerThread(Thread.currentThread());
            else
                acquire(1);
        }

        protected final boolean tryAcquire(int i)
        {
            return nonfairTryAcquire(i);
        }

        private static final long serialVersionUID = 7316153563782823691L;

        NonfairSync()
        {
        }
    }

    static abstract class Sync extends AbstractQueuedSynchronizer
    {

        abstract void lock();

        final boolean nonfairTryAcquire(int i)
        {
            Thread thread = Thread.currentThread();
            int j = getState();
            if(j == 0)
            {
                if(compareAndSetState(0, i))
                {
                    setExclusiveOwnerThread(thread);
                    return true;
                }
            } else
            if(thread == getExclusiveOwnerThread())
            {
                int k = j + i;
                if(k < 0)
                {
                    throw new Error("Maximum lock count exceeded");
                } else
                {
                    setState(k);
                    return true;
                }
            }
            return false;
        }

        protected final boolean tryRelease(int i)
        {
            int j = getState() - i;
            if(Thread.currentThread() != getExclusiveOwnerThread())
                throw new IllegalMonitorStateException();
            boolean flag = false;
            if(j == 0)
            {
                flag = true;
                setExclusiveOwnerThread(null);
            }
            setState(j);
            return flag;
        }

        protected final boolean isHeldExclusively()
        {
            return getExclusiveOwnerThread() == Thread.currentThread();
        }

        final AbstractQueuedSynchronizer.ConditionObject newCondition()
        {
            return new AbstractQueuedSynchronizer.ConditionObject(this);
        }

        final Thread getOwner()
        {
            return getState() != 0 ? getExclusiveOwnerThread() : null;
        }

        final int getHoldCount()
        {
            return isHeldExclusively() ? getState() : 0;
        }

        final boolean isLocked()
        {
            return getState() != 0;
        }

        private void readObject(ObjectInputStream objectinputstream)
            throws IOException, ClassNotFoundException
        {
            objectinputstream.defaultReadObject();
            setState(0);
        }

        private static final long serialVersionUID = -5179523762034025860L;

        Sync()
        {
        }
    }


    public ReentrantLock()
    {
        sync = new NonfairSync();
    }

    public ReentrantLock(boolean flag)
    {
        sync = ((Sync) (flag ? ((Sync) (new FairSync())) : ((Sync) (new NonfairSync()))));
    }

    public void lock()
    {
        sync.lock();
    }

    public void lockInterruptibly()
        throws InterruptedException
    {
        sync.acquireInterruptibly(1);
    }

    public boolean tryLock()
    {
        return sync.nonfairTryAcquire(1);
    }

    public boolean tryLock(long l, TimeUnit timeunit)
        throws InterruptedException
    {
        return sync.tryAcquireNanos(1, timeunit.toNanos(l));
    }

    public void unlock()
    {
        sync.release(1);
    }

    public Condition newCondition()
    {
        return sync.newCondition();
    }

    public int getHoldCount()
    {
        return sync.getHoldCount();
    }

    public boolean isHeldByCurrentThread()
    {
        return sync.isHeldExclusively();
    }

    public boolean isLocked()
    {
        return sync.isLocked();
    }

    public final boolean isFair()
    {
        return sync instanceof FairSync;
    }

    protected Thread getOwner()
    {
        return sync.getOwner();
    }

    public final boolean hasQueuedThreads()
    {
        return sync.hasQueuedThreads();
    }

    public final boolean hasQueuedThread(Thread thread)
    {
        return sync.isQueued(thread);
    }

    public final int getQueueLength()
    {
        return sync.getQueueLength();
    }

    protected Collection getQueuedThreads()
    {
        return sync.getQueuedThreads();
    }

    public boolean hasWaiters(Condition condition)
    {
        if(condition == null)
            throw new NullPointerException();
        if(!(condition instanceof AbstractQueuedSynchronizer.ConditionObject))
            throw new IllegalArgumentException("not owner");
        else
            return sync.hasWaiters((AbstractQueuedSynchronizer.ConditionObject)condition);
    }

    public int getWaitQueueLength(Condition condition)
    {
        if(condition == null)
            throw new NullPointerException();
        if(!(condition instanceof AbstractQueuedSynchronizer.ConditionObject))
            throw new IllegalArgumentException("not owner");
        else
            return sync.getWaitQueueLength((AbstractQueuedSynchronizer.ConditionObject)condition);
    }

    protected Collection getWaitingThreads(Condition condition)
    {
        if(condition == null)
            throw new NullPointerException();
        if(!(condition instanceof AbstractQueuedSynchronizer.ConditionObject))
            throw new IllegalArgumentException("not owner");
        else
            return sync.getWaitingThreads((AbstractQueuedSynchronizer.ConditionObject)condition);
    }

    public String toString()
    {
        Thread thread = sync.getOwner();
        return (new StringBuilder()).append(super.toString()).append(thread != null ? (new StringBuilder()).append("[Locked by thread ").append(thread.getName()).append("]").toString() : "[Unlocked]").toString();
    }

    private static final long serialVersionUID = 7373984872572414699L;
    private final Sync sync;
}


/*
	DECOMPILATION REPORT

	Decompiled from: C:\Program Files\Java\jre1.8.0_151\lib\rt.jar
	Total time: 386 ms
	Jad reported messages/errors:
	Exit status: 0
	Caught exceptions:
*/

2.源码分析(从ReentrantLock如何创建开始深究)

 public ReentrantLock()
    {
        sync = new NonfairSync();
    }

    public ReentrantLock(boolean flag)
    {
        sync = ((Sync) (flag ? ((Sync) (new FairSync())) : ((Sync) (new NonfairSync()))));
    }

通过上面代码,我们能够知道ReentrantLock有两个构造函数,一个是ReentrantLock()、另一个是RenntrantLock(boolean flag)
从中我们就能发现,ReentrantLock具有两种模式,一种是公平锁、另一种是非公平锁,因此我们使用时能够根据自身的需求进行创建不同模式的锁;
创建方式如下:

两种非公平锁创建方式:
ReentrantLock Nofairlock = new ReentrantLock();
ReentrantLock Nofairlock1 = new ReentrantLock(false);

创建公平锁
ReentrantLock fairlock  = new ReentrantLock();

从ReentrantLock 的构造函数中,我们能够发现FairSync和NonfairSync两个静态内部类,我们先对NonfairSync(非公平锁)进行分析

 static final class NonfairSync extends Sync
    {

        final void lock()
        {
            if(compareAndSetState(0, 1))
                setExclusiveOwnerThread(Thread.currentThread());
            else
                acquire(1);
        }

        protected final boolean tryAcquire(int i)
        {
            return nonfairTryAcquire(i);
        }

        private static final long serialVersionUID = 7316153563782823691L;

        NonfairSync()
        {
        }
    }

我们能够看出NonfairSync继承了Sync,下面我们下来看看Sync类是怎么写

    static abstract class Sync extends AbstractQueuedSynchronizer
    {

        abstract void lock();

        final boolean nonfairTryAcquire(int i)
        {
            Thread thread = Thread.currentThread();
            int j = getState();
            if(j == 0)
            {
                if(compareAndSetState(0, i))
                {
                    setExclusiveOwnerThread(thread);
                    return true;
                }
            } else
            if(thread == getExclusiveOwnerThread())
            {
                int k = j + i;
                if(k < 0)
                {
                    throw new Error("Maximum lock count exceeded");
                } else
                {
                    setState(k);
                    return true;
                }
            }
            return false;
        }

        protected final boolean tryRelease(int i)
        {
            int j = getState() - i;
            if(Thread.currentThread() != getExclusiveOwnerThread())
                throw new IllegalMonitorStateException();
            boolean flag = false;
            if(j == 0)
            {
                flag = true;
                setExclusiveOwnerThread(null);
            }
            setState(j);
            return flag;
        }

        protected final boolean isHeldExclusively()
        {
            return getExclusiveOwnerThread() == Thread.currentThread();
        }

        final AbstractQueuedSynchronizer.ConditionObject newCondition()
        {
            return new AbstractQueuedSynchronizer.ConditionObject(this);
        }

        final Thread getOwner()
        {
            return getState() != 0 ? getExclusiveOwnerThread() : null;
        }

        final int getHoldCount()
        {
            return isHeldExclusively() ? getState() : 0;
        }

        final boolean isLocked()
        {
            return getState() != 0;
        }

        private void readObject(ObjectInputStream objectinputstream)
            throws IOException, ClassNotFoundException
        {
            objectinputstream.defaultReadObject();
            setState(0);
        }

        private static final long serialVersionUID = -5179523762034025860L;

        Sync()
        {
        }
    }

从源码中我们能够看出Sync是一个静态的抽象类,并且继承了AbstractQueuedSynchronizer(抽象队列同步器)类,其中AbstractQueuedSynchronizer就是我们所说的AQS了,关于AQS我们下次再聊。
插曲一下:
FairSync类和NonfairSync类都继承了Sync抽象类,其实这是一种模板方法设计模式,在Spring源码中AbstracBeanFactory是抽象类模板,AbstraAutowireCapableFactory和DefaultListableBeanFactory类都继承了AbstracBeanFactory类,因此也是一种模板方法模式。

3.NoFairSync类的分析

3.1 lock()方法分析
3.1.1 compareAndSetState()方法分析

我们先来看看NoFairSync中的第一个方法

 final void lock()
        {
            if(compareAndSetState(0, 1))
                setExclusiveOwnerThread(Thread.currentThread());
            else
                acquire(1);
        }

在lock方法中compareAndSetState(0,1)方法是父类中Sync的父类方法即AbstractQueuedSynchronizer实现方法该方法的代码如下
因此根据compareAndSwapInt代码功能我们能够知道:

表示如果当前state=0,那么设置state=1,并返回true,然后使用setExclusiveOwnerThread()方法把线程设为当前线程独占资源;否则返回false,执行acquire(1)方法

3.1.2 acquire(1)方法分析

接下来我们看看acquire(1)方法,该方法也是使用了父类AbstractQueuedSynchronizer的方法

 public final void acquire(int i)
    {
        if(!tryAcquire(i) && acquireQueued(addWaiter(Node.EXCLUSIVE), i))
            selfInterrupt();
    }

从该方法中,我们能够看到它调用了tryAcquire(i)和acquireQueued(addWaiter(Node.EXCLUSIVE), i))方法

3.1.2.1 tryAcquire(i)分析

我们先来看看tryAcquire(i)方法的作用,该代码是在NoFairSync类中中的

//NoFairSync类中的
  protected final boolean tryAcquire(int i)
        {
            return nonfairTryAcquire(i);//该方法是在父类Sync中实现的
        }
--------------------------------------------------------------------------------------------------------------

//在Sync类中的
 final boolean nonfairTryAcquire(int i)
        {   //获取当前的线程
            Thread thread = Thread.currentThread();
            //得到当前线程的状态
            int j = getState();
            if(j == 0)
            {
            //如果该线程状态是为0,即处于空闲的状态,然后就重新CAS一次,如果返回为true,则把当前的threan设置当前拥有独占访问权限的线程
                if(compareAndSetState(0, i))
                {

                    setExclusiveOwnerThread(thread);
                    return true;
                }
            } 
            else if(thread == getExclusiveOwnerThread())//getExclusiveOwnerThread方法的作用是返回setExclusiveOwnerThread最后设置的线程,或null如果从未设置。 这种方法不会强加任何同步或volatile字段访问
            {
            
                int k = j + i;
                //如果当前的线程已经获取了改锁,要求再次获取时,就会抛出Error
                if(k < 0)
                {
                    throw new Error("Maximum lock count exceeded");
                } else
                {
                //否则就更新该线程的状态
                    setState(k);
                    return true;
                }
            }
            return false;
        }


3.1.2.1 addWaiter(Node.EXCLUSIVE), i)方法分析

addWaiter的代码如下,该方法是在AbstractQueuedSynchronizer.java文件中,下面我们分析一下该方法的作用:
其中 static final Node EXCLUSIVE = null;
通过源码我们能够知道Node.EXCLUSIVE的作用是是一个指向空指针的节点

 private Node addWaiter(Node node)
    {
    //通过源码我们能够知道,该方法是为了把当前的线程初始化成一个节点,然后把节点返回
        Node node1 = new Node(Thread.currentThread(), node);
        Node node2 = tail;
        //如果当前队列不是空队列,则把新节点加入到tail的后面,返回当前节点,否则进入enq进行处理。
        if(node2 != null)
        {
            node1.prev = node2;
            if(compareAndSetTail(node2, node1))
            {
                node2.next = node1;
                return node1;
            }
        }
        enq(node1);
        return node1;
    }


Node(x,y)初始化的代码,把当前节点放在队列尾部

 Node(Thread thread1, Node node)
        {
            nextWaiter = node;
            thread = thread1;
        }

enq()方法作用分析,很明显该方法是为了把当前线程节点,放到队列的尾节点,该方法也是CAS的方式

 private Node enq(Node node)
    {
        Node node1;
        do
        {
            do
            {
                node1 = tail;
                if(node1 != null)
                    break;
                if(compareAndSetHead(new Node()))
                    tail = head;
            } while(true);
            node.prev = node1;
        } while(!compareAndSetTail(node1, node));
        node1.next = node;
        return node1;
    }

acquireQueued()方法分析
(1)如果当前节点是队列的头结点(如果第一个节点是虚拟节点,那么第二个节点实际上就是头结点了),就尝试在此获取锁tryAcquire(arg)。如果成功就将头结点设置为当前节点(不管第一个结点是否是虚拟节点),返回中断状态。否则进行(2)。
(2)检测当前节点是否应该park()-“挂起的意思”,如果应该park()就挂起当前线程并且返回当前线程中断状态。进行操作(1)。

  final boolean acquireQueued(final Node node, int arg) {
        try {
            boolean interrupted = false;
            for (;;) {
                final Node p = node.predecessor();
                if (p == head && tryAcquire(arg)) {
                    setHead(node);
                    p.next = null; // help GC
                    return interrupted;
                }
                if (shouldParkAfterFailedAcquire(p, node) &&
                    parkAndCheckInterrupt())
                    interrupted = true;
            }
        } catch (RuntimeException ex) {
            cancelAcquire(node);
            throw ex;
        }
     }

知识补充:线程有六个状态:新建(NEW)–0、运行(RUNNABLE)–1、阻塞( BLOCKED)–2、等待(WAITING )–3、限期等待(TIMED_WAITING)–4、完成(TERMINATED )–5,
不同的数字代表不同的状态即state的值。

   static 
        {
            NEW = new State("NEW", 0);
            RUNNABLE = new State("RUNNABLE", 1);
            BLOCKED = new State("BLOCKED", 2);
            WAITING = new State("WAITING", 3);
            TIMED_WAITING = new State("TIMED_WAITING", 4);
            TERMINATED = new State("TERMINATED", 5);
            $VALUES = (new State[] {
                NEW, RUNNABLE, BLOCKED, WAITING, TIMED_WAITING, TERMINATED
            });
        }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值