周志华 机器学习 Day25

                                               概率图模型

隐马尔可夫模型

机器学习最重要的任务,是根据一些已观察到的证据(例如训练样本)来对感兴趣的未知变量(例如类别标记)进行估计和推测。概率模型提供了一种描述框架,将学习任务归结于计算变量的概率分布。在概率模型中,利用已知变量推测未知变量的分布称为“推断”,其核心是如何基于可观测变量推测出未知变量的条件分布。具体来说,假定所关心的变量集合为Y,可观测变量集合为O,其他变量的集合为R,“生成式”模型考虑联合分布P(Y,R,O),“判别式”模型考虑条件分布P(Y,R|O)。戈丁一组观测变量值,推断就是要由P(Y,R,O)或P(Y,R|O)得到条件概率分布P(Y|O)。

概率图模型是一类用图来表达变量相关关系的概率模型。它以图为表示工具,最常见的是用一个结点表示一个或一组随机变量,结点之间的边表示变量间的概率相关关系,即“变量关系图”。根据边的性质不同,概率图模型可大致分为两类:(1)使用有向无环图表示变量间的依赖关系,称为有向图模型或贝叶斯网;(2)使用无向图表示变量间的相关关系,称为无向图模型或马尔可夫网。

隐马尔可夫模型(简称HMM)是结构最简单的动态贝叶斯网,这是一种著名的有向图模型,主要用于时序数据建模,在语音识别、自然语言处理等领域有广泛应用。

上图第一排是状态变量,yi表示第i时刻的系统状态。通常假定状态变量是隐藏的、不可被观测的,因此状态变量亦称隐变量。第二排是观测变量,xi表示第i时刻的观测值。同时,箭头表示了变量间的依赖关系,在任一时刻,观测变量的取值仅依赖于状态变量。同样的,t时刻的状态yt仅依赖于t-1时刻的状态y(t-1),与其余的状态无关,这就是所谓的“马尔可夫链”。基于这种依赖关系,所有变量的联合概率分布为

马尔可夫随机场

马尔可夫随机场(简称MRF)是典型的马尔可夫网,这是一种著名是无向图模型。图中每个结点表示一个或一组变量,结点之间的边表示两个变量之间的依赖关系。马尔可夫随机场有一组势函数,亦称“因子”,这是定义在变量子集上的非负实函数,主要用于定义概率分布函数。

上图显示出一个简单的马尔可夫随机场。对于图中结点的每一个子集,若其中任意两结点间都有边连接,则称该结点子集为一个“团”。若在一个团中加入另外任何一个结点都不在形成团,则称该团委“极大团”。

在马尔可夫随机场中如何得到“条件独立性”呢?同样借助“分离”概念,若从结点集A中的结点到B中的结点都必须经过结点集C中的结点,则称结点集A和B被结点集C分离,C称为“分离集”。

条件随机场

条件随机场(简称CRF)是一种判别式无向图模型,而判别式模型是对条件分布进行建模。上面两种均是生成式模型,而条件随机场则是判别式模型。

 

### 关于周志华机器学习》中的公式推导 为了更好地理解周志华机器学习》中的公式推导,可以从几个方面入手: #### 1. 掌握基础知识 确保具备足够的数学背景知识对于理解和掌握书中涉及的各种公式至关重要。这包括但不限于线性代数、概率论与统计学的基础概念[^3]。 #### 2. 阅读相关章节并跟随逻辑推理 每章开头通常会给出该部分的核心思想和目标,在阅读过程中应当注意作者是如何逐步引入新的知识点,并通过具体的例子或应用场景加深理解。当遇到复杂的定理证明时,建议先尝试自己思考其背后的原理再对照原文验证自己的想法是否正确[^4]。 #### 3. 参考其他资源辅助学习 如果觉得某些地方难以理解,则可以寻找额外的学习材料作为补充说明。例如,《机器学习》这本书在系列原创机器学习30讲的基础上进行了扩展,提供了详细的公式推导和代码实现案例,有助于更深入地了解各个算法的工作机制及其数学依据[^1]。 #### 4. 实践练习巩固所学内容 理论联系实际是提高编程能力和解决具体问题的有效途径之一。可以通过编写简单的程序来重现书中的实验结果或是参与开源项目贡献等方式积累经验。此外,“南瓜书”也是一份非常有价值的参考资料,它记录了许多人在自学过程中遇到的问题及解决方案,可以帮助读者克服难关成为更加优秀的开发者。 ```python import numpy as np def calculate_gradient(X, y, w): """ 计算梯度下降法中的梯度 参数: X (numpy.ndarray): 输入特征矩阵 y (numpy.array): 输出标签向量 w (numpy.array): 权重参数 返回: grad_w (numpy.array): 对w求偏导后的梯度值 """ N = len(y) predictions = 1 / (1 + np.exp(-X.dot(w))) error = predictions - y grad_w = (1/N) * X.T.dot(error) return grad_w ``` 此函数展示了如何基于给定的数据集计算逻辑回归模型中权重更新所需的梯度,这是许多机器学习教材都会讨论的一个典型实例。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值