【题目描述】Find the contiguous subarray within an array (containing at least one number) which has the largest sum.
For example, given the array[−2,1,−3,4,−1,2,1,−5,4],the contiguous subarray[4,−1,2,1]has the largest sum =6.
click to show more practice.
More practice:
If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.
【解题思路】可使用动态规划来解决。时间复杂度为O(n)。假设已知0, …, k的最大和sum[k]以后,则0, …, k+1的最大和sum[k+1]分为以下两种情况:
1)若sum[k]>=0,则sum[k+1]=sum[k]+A[k+1]。
2)若sum[k]<0,另起一个SubArray,令sum[k+1]=A[k+1]。
在计算过程中,使用一个变量maxsum用于存储sum的最大值,一旦出现更大的sum值则更新之,最后返回该变量即可。
【考查内容】数组,动态规划
class Solution {
public:
int maxSubArray(int A[], int n) {
if (n <= 0)
return 0;
int sum = 0;
int maxsum = INT_MIN;
for (int i = 0; i < n; i++){
sum += A[i];
if (sum > maxsum)
maxsum = sum;
if (sum < 0)
sum = 0;
}
return maxsum;
}
};