tf.layers

本文介绍了 TensorFlow 中 tf.layers 模块的相关内容,包括各类层的定义与使用方法,如卷积层、池化层等,并详细解释了重要的 API,如 L2 正则化和卷积层的功能接口。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

参考  tf.layers - 云+社区 - 腾讯云

目录

一、简介

1、模块列表

2、类列表

3、函数列表

二、重要的API

1、tf.contrib.layers.l2_regularizer


一、简介

1、模块列表

2、类列表

3、函数列表

二、重要的API

1、tf.contrib.layers.l2_regularizer

返回一个函数,该函数可用于对权重应用L2正则化。

tf.contrib.layers.l2_regularizer(
    scale,
    scope=None
)

较小的L2值有助于防止训练数据过度拟合。

参数:

  • scale: 标量乘法器张量。0.0禁用正则化器。
  • scope: 一个可选的范围名称。

返回值:

  • 一个具有l2(权重)签名的函数,它应用l2正则化。

可能产生的异常:

  • ValueError: If scale is negative or if scale is not a float.

2、tf.layers.conv2d

Functional interface for the 2D convolution layer. (deprecated)

Aliases:

tf.layers.conv2d(
    inputs,
    filters,
    kernel_size,
    strides=(1, 1),
    padding='valid',
    data_format='channels_last',
    dilation_rate=(1, 1),
    activation=None,
    use_bias=True,
    kernel_initializer=None,
    bias_initializer=tf.zeros_initializer(),
    kernel_regularizer=None,
    bias_regularizer=None,
    activity_regularizer=None,
    kernel_constraint=None,
    bias_constraint=None,
    trainable=True,
    name=None,
    reuse=None
)

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use tf.keras.layers.Conv2D instead.

This layer creates a convolution kernel that is convolved (actually cross-correlated) with the layer input to produce a tensor of outputs. If use_bias is True (and a bias_initializer is provided), a bias vector is created and added to the outputs. Finally, if activation is not None, it is applied to the outputs as well.

Arguments:

  • inputs: Tensor input.
  • filters: Integer, the dimensionality of the output space (i.e. the number of filters in the convolution).
  • kernel_size: An integer or tuple/list of 2 integers, specifying the height and width of the 2D convolution window. Can be a single integer to specify the same value for all spatial dimensions.
  • strides: An integer or tuple/list of 2 integers, specifying the strides of the convolution along the height and width. Can be a single integer to specify the same value for all spatial dimensions. Specifying any stride value != 1 is incompatible with specifying any dilation_rate value != 1.
  • padding: One of "valid" or "same" (case-insensitive).
  • data_format: A string, one of channels_last (default) or channels_first. The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch, height, width, channels) while channels_first corresponds to inputs with shape (batch, channels, height, width).

  • dilation_rate: An integer or tuple/list of 2 integers, specifying the dilation rate to use for dilated convolution. Can be a single integer to specify the same value for all spatial dimensions. Currently, specifying any dilation_rate value != 1 is incompatible with specifying any stride value != 1.

  • activation: Activation function. Set it to None to maintain a linear activation.

  • use_bias: Boolean, whether the layer uses a bias.

  • kernel_initializer: An initializer for the convolution kernel.

  • bias_initializer: An initializer for the bias vector. If None, the default initializer will be used.

  • kernel_regularizer: Optional regularizer for the convolution kernel.

  • bias_regularizer: Optional regularizer for the bias vector.

  • activity_regularizer: Optional regularizer function for the output.

  • kernel_constraint: Optional projection function to be applied to the kernel after being updated by an Optimizer (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training.

  • bias_constraint: Optional projection function to be applied to the bias after being updated by an Optimizer.

  • trainable: Boolean, if True also add variables to the graph collection GraphKeys.TRAINABLE_VARIABLES (see tf.Variable).

  • name: A string, the name of the layer.

  • reuse: Boolean, whether to reuse the weights of a previous layer by the same name.

Returns:

Output tensor.

Raises:

  • ValueError: if eager execution is enabled.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Wanderer001

ROIAlign原理

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值