torch.utils.data

torch.utils.data模块提供了DataLoader类,用于处理不同类型的Dataset,包括map-style和iterable-style。它支持自动批处理、单进程和多进程数据加载、内存固定等特性。用户可以自定义Sampler和collate_fn来控制数据加载顺序和批处理方式。对于map-style Dataset,可以通过Sampler指定数据加载顺序,而iterable-style Dataset则由用户定义的可迭代顺序控制。在多进程数据加载中,需要注意避免数据重复。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

参考 torch.utils.data - 云+社区 - 腾讯云

目录

torch.utils.data

Dataset Types

Map-style datasets

Iterable-style datasets

Data Loading Order and Sampler

Loading Batched and Non-Batched Data

Automatic batching (default)

Disable automatic batching

Working with collate_fn

Single- and Multi-process Data Loading

Single-process data loading (default)

Multi-process data loading

Memory Pinning


torch.utils.data

At the heart of PyTorch data loading utility is the torch.utils.data.DataLoader class. It represents a Python iterable over a dataset, with support for

These options are configured by the constructor arguments of a DataLoader, which has signature:

DataLoader(dataset, batch_size=1, shuffle=False, sampler=None,
           batch_sampler=None, num_workers=0, collate_fn=None,
           pin_memory=False, drop_last=False, timeout=0,
           worker_init_fn=None)

The sections below describe in details the effects and usages of these options.

Dataset Types

The most important argument of DataLoader constructor is dataset, which indicates a dataset object to load data from. PyTorch supports two different types of datasets:

Map-style datasets

A map-style dataset is one that implements the __getitem__() and __len__() protocols, and represents a map from (possibly non-integral) indices/keys to data samples.

For example, such a dataset, when accessed with dataset[idx], could read the idx-th image and its corresponding label from a folder on the disk.

See Dataset for more details.

Iterable-style datasets

An iterable-style dataset is an instance of a subclass of IterableDataset that implements the __iter__() protocol, and represents an iterable over data samples. This type of datasets is particularly suitable for cases where random reads are expensive or even improbable, and where the batch size depends on the fetched data.

For example, such a dataset, when called iter(dataset), could return a stream of data reading from a database, a remote server, or even logs generated in real time.

See IterableDataset for more details.

Note

When using an IterableDataset with multi-process data loading. The same dataset object is replicated on each worker process, and thus the replicas must be configured differently to avoid duplicated data. See IterableDataset documentations for how to achieve this.

Data Loading Order and Sampler

For iterable-style datasets, data loading order is entirely controlled by the user-defined iterable. This allows easier implementations of chunk-reading and dynamic batch size (e.g., by yielding a batched sample at each time).

The rest of this section concerns the case with map-style datasets. torch.utils.data.Sampler classes are used to specify the sequence of indices/keys used in data loading. They represent iterable objects over the indices to datasets. E.g., in the common case with stochastic gradient decent (SGD), a Sampler could randomly permute a list of indices and yield each one at a time, or yield a small number of them for mini-batch SGD.

A sequential or shuffled sampler will be automatically constructed based on the shuffle argument to a DataLoader. Alternatively, users may use the sampler argument to specify a custom Sampler object that at each time yields the next index/key to fetch.

A custom Sampler that yields a list of batch indices at a time can be passed as the batch_sampler argument. Automatic batching can also be enabled via batch_size and drop_last arguments. See the next section for more details on this.

Note

Neither sampler nor batch_sampler is compatible with iterable-style datasets, since such datasets have no notion of a key or an index.

Loading Batched and Non-Batched Data

DataLoader supports automatically collating individual fetched data samples into batches via arguments batch_size, drop_last, and batch_sampler.

Automatic batching (default)

This is the most common case, and corresponds to fetching a minibatch of data and collating them into batched samples, i.e., containing Tensors with one dimension being the batch dimension (usually the first).

When batch_size (default 1) is not None, the data loader yields batched samples instead of individual samples. batch_size and drop_last arguments are used to specify how the data loader obtains batches of dataset keys. For map-style datasets, users can alternatively specify batch_sampler, which yields a list of keys at a time.

Note

The batch_size and drop_last arguments essentially are used to construct a batch_sampler from sampler. For map-style datasets, the sampler is either provided by user or constructed based on the shuffle argument. For iterable-style datasets, the sampler is a dummy infinite one. See this section on more details on samplers.

Note

When fetching from iterable-style datasets with multi-processing, the drop_last argument drops the last non-full batch of each worker’s dataset replica.

After fetching a list of samples using the indices from sampler, the function passed as the collate_fn argument is used to collate lists of samples into batches.

In this case, loading from a map-style dataset is roughly equivalent with:

for indices in batch_sampler:
    yield collate_fn([dataset[i] for i in indices])

and loading from an iterable-style dataset is roughly equivalent with:

dataset_iter = i
<think>好的,用户问如何安装torch.utils.data模块。首先,我需要确认这个模块是否是PyTorch的一部分。根据引用[2]、[4]、[5]提到的内容,torch.utils.data是PyTorch的核心模块,包含Dataset和DataLoader等类。因此,用户不需要单独安装这个模块,而是需要安装PyTorch本身。 接下来,我应该检查用户可能的PyTorch安装情况。如果用户没有安装PyTorch,或者安装的版本过旧,可能需要更新。常见的安装方式是通过pip或conda。例如,使用pip install torch来安装最新版本,或者指定版本如pip install torch==1.9.0。对于CUDA支持,可以选择对应的命令,比如pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113。 然后,用户可能需要验证安装是否成功。建议用户运行Python并导入torch,然后检查torch.utils.data是否存在。如果有导入错误,说明安装可能有问题,需要重新安装PyTorch。同时,引用[3]提到PyTorch版本问题,比如v2.4解决了随机数生成的bug,所以建议用户安装较新的版本以获得更好的稳定性和功能支持。 最后,用户的问题可能源于对PyTorch模块结构不熟悉,误以为需要单独安装子模块。需要明确说明torch.utils.data是PyTorch内置的,安装PyTorch后即可使用。同时,可以给出示例代码,如从torch.utils.data导入DataLoader,帮助用户确认模块是否可用。</think>安装$torch.utils.data$模块的正确方式是通过安装PyTorch框架本身。该模块是PyTorch核心库的组成部分,包含在标准PyTorch发行包中。以下是具体安装步骤: ### 一、安装PyTorch框架 1. **通过官方推荐命令安装** 访问PyTorch官网(https://pytorch.org),根据系统配置选择对应安装命令: ```bash # CUDA 11.3版本 pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113 # CPU-only版本 pip install torch torchvision torchaudio ``` 2. **验证安装** ```python import torch print(torch.__version__) # 输出版本号如1.12.1 from torch.utils.data import DataLoader # 无报错则说明模块存在[^2][^4] ``` ### 二、常见问题排查 | 问题现象 | 解决方案 | |---------|----------| | `ModuleNotFoundError: No module named 'torch'` | 重新执行PyTorch安装命令 | | 旧版本功能缺失 | 升级PyTorch:`pip install --upgrade torch` | | 环境冲突 | 使用虚拟环境隔离:`conda create -n pytorch_env python=3.8` | ### 三、模块使用验证 ```python from torch.utils.data import Dataset, DataLoader import torch # 创建测试数据集 data = torch.randn(100, 3) dataset = torch.utils.data.TensorDataset(data) dataloader = DataLoader(dataset, batch_size=10) print(next(iter(dataloader))[0].shape) # 应输出torch.Size([10, 3])[^5] ``` ### 四、版本兼容性建议 推荐使用PyTorch 1.8+版本以获得完整的$torch.utils.data$功能支持,包括: - 改进的随机数生成机制[^3] - 增强的多进程数据加载稳定性 - 更高效的并行化处理
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Wanderer001

ROIAlign原理

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值