import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as np
# 训练数据
x_data = np.linspace(-0.5,0.5,200)[:,np.newaxis]
noise = np.random.normal(0,0.02,x_data.shape)
y_data = np.square(x_data) + noise
print x_data.shape
print y_data.shape
# 定义两个 placeholder
x = tf.placeholder(tf.float32,shape=[None,1]) # None 代表不确定大小
y = tf.placeholder(tf.float32,shape=[None,1]) # None 代表不确定大小
# 定义网络的中间层
weight_L1 = tf.Variable(tf.random_normal([1,10]))
biases_L1 = tf.Variable(tf.zeros([1,10])) # 偏执个数等于神经元个数!!!
Wx_plus_b_L1 = tf.matmul(x,weight_L1) + biases_L1
L1 = tf.nn.tanh(Wx_plus_b_L1)
# 定义网络的输出层
weight_L2 = tf.Variable(tf.random_normal([10,1]))
biases_L2 = tf.Variable(tf.zeros([1,1]))
Wx_plus_b_L2 = tf.matmul(L1,weight_L2) + biases_L2
prediction = tf.nn.tanh(Wx_plus_b_L2) # 激活函数的值域范围 tanh(-1,1) ,sigmoid(0,1), relu(0,+inf)
# 定义损失函数
loss = tf.reduce_mean(tf.square(prediction-y))
# 使用梯度下降法训练
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
# 建立会话
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for _ in range(2000):
sess.run(train_step,feed_dict={x:x_data,y:y_data})
prediction_value = sess.run(prediction,feed_dict={x:x_data})
plt.figure()
plt.scatter(x_data,y_data)
plt.plot(x_data,prediction_value,'r-',lw=5)
plt.show()
print sess.run(tf.shape(weight_L1))
print weight_L1[0,1].eval()
print weight_L1.eval()
TensorFlow 的 hello world!入门首选
最新推荐文章于 2024-07-11 11:16:39 发布