spark结构化流保存mysql_实战|使用Spark结构化流写入Hudi

欢迎关注微信公众号:ApacheHudi

1. 项目背景

传统数仓的组织架构是针对离线数据的OLAP(联机事务分析)需求设计的,常用的导入数据方式为采用sqoop或spark定时作业逐批将业务库数据导入数仓。随着数据分析对实时性要求的不断提高,按小时、甚至分钟级的数据同步越来越普遍。由此展开了基于spark/flink流处理机制的(准)实时同步系统的开发。

然而实时同步数仓从一开始就面临如下几个挑战:小文件问题。不论是spark的microbatch模式,还是flink的逐条处理模式,每次写入HDFS时都是几M甚至几十KB的文件。长时间下来产生的大量小文件,会对HDFS namenode产生巨大的压力。

对update操作的支持。HDFS系统本身不支持数据的修改,无法实现同步过程中对记录进行修改。

事务性。不论是追加数据还是修改数据,如何保证事务性。即数据只在流处理程序commit操作时一次性写入HDFS,当程序rollback时,已写入或部分写入的数据能随之删除。

Hudi是针对以上问题的解决方案之一。以下是对Hudi的简单介绍,主要内容翻译自官网。

2. Hudi简介

2.1 时间线(Timeline)

Hudi内部按照操作时刻(instant)对表的所有操作维护了一条时间线,由此可以提供表在某一时刻的视图,还能够高效的提取出延后到达的数据。每一个时刻包含:时刻行为:对表操作的类型,包含:commit:提交,将批次的数据原子性的写入表;

clean: 清除,后台作业,不断清除不需要的旧得版本的数据;

delta_commit:delta 提交是将批次记录原子性的写入MergeOnRead表中,数据写入的目的地是delta日志文件;

compacttion:压缩,后台作业,将不同结构的数据,例如记录更新操作的行式存储的日志文件合并到列式存储的文件中。压缩本身是一个特殊的commit操作;

rollback:回滚,一些不成功时,删除所有部分写入的文件;

savepoint:保存点,标志某些文件组为“保存的“,这样cleaner就不会删除这些文件;时刻时间:操作开始的时间戳;

状态:时刻的当前状态,包含:requested 某个操作被安排执行,但尚未初始化

inflight 某个操作正在执行

completed 某一个操作在时间线上已经完成

Hudi保证按照时间线执行的操作按照时刻时间具有原子性及时间线一致性。

2.2 文件管理

Hudi表存在在DFS系统的 base path(用户写入Hudi时自定义) 目录下,在该目录下被分成不同的分区。每一个分区以 partition path 作为唯一的标识,组织形式与Hive相同。

每一个分区内,文件通过唯一的 FileId 文件id 划分到 FileGroup 文件组。每一个FileGroup包含多个 FileSlice 文件切片,每一个切片包含一个由commit或compaction操作形成的base

### RT-DETRv3 网络结构分析 RT-DETRv3 是一种基于 Transformer 的实时端到端目标检测算法,其核心在于通过引入分层密集正监督方法以及一系列创新性的训练策略,解决了传统 DETR 模型收敛慢和解码器训练不足的问题。以下是 RT-DETRv3 的主要网络结构特点: #### 1. **基于 CNN 的辅助分支** 为了增强编码器的特征表示能力,RT-DETRv3 引入了一个基于卷积神经网络 (CNN) 的辅助分支[^3]。这一分支提供了密集的监督信号,能够与原始解码器协同工作,从而提升整体性能。 ```python class AuxiliaryBranch(nn.Module): def __init__(self, in_channels, out_channels): super(AuxiliaryBranch, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1) self.bn = nn.BatchNorm2d(out_channels) def forward(self, x): return F.relu(self.bn(self.conv(x))) ``` 此部分的设计灵感来源于传统的 CNN 架构,例如 YOLO 系列中的 CSPNet 和 PAN 结构[^2],这些技术被用来优化特征提取效率并减少计算开销。 --- #### 2. **自注意力扰动学习策略** 为解决解码器训练不足的问题,RT-DETRv3 提出了一种名为 *self-att 扰动* 的新学习策略。这种策略通过对多个查询组中阳性样本的标签分配进行多样化处理,有效增加了阳例的数量,进而提高了模型的学习能力和泛化性能。 具体实现方式是在训练过程中动态调整注意力权重分布,确保更多的高质量查询可以与真实标注 (Ground Truth) 进行匹配。 --- #### 3. **共享权重解编码器分支** 除了上述改进外,RT-DETRv3 还引入了一个共享权重的解编码器分支,专门用于提供密集的正向监督信号。这一设计不仅简化了模型架构,还显著降低了参数量和推理时间,使其更适合实时应用需求。 ```python class SharedDecoderEncoder(nn.Module): def __init__(self, d_model, nhead, num_layers): super(SharedDecoderEncoder, self).__init__() decoder_layer = nn.TransformerDecoderLayer(d_model=d_model, nhead=nhead) self.decoder = nn.TransformerDecoder(decoder_layer, num_layers=num_layers) def forward(self, tgt, memory): return self.decoder(tgt=tgt, memory=memory) ``` 通过这种方式,RT-DETRv3 实现了高效的目标检测流程,在保持高精度的同时大幅缩短了推理延迟。 --- #### 4. **与其他模型的关系** 值得一提的是,RT-DETRv3 并未完全抛弃经典的 CNN 技术,而是将其与 Transformer 结合起来形成混合架构[^4]。例如,它采用了 YOLO 系列中的 RepNCSP 模块替代冗余的多尺度自注意力层,从而减少了不必要的计算负担。 此外,RT-DETRv3 还借鉴了 DETR 的一对一匹配策略,并在此基础上进行了优化,进一步提升了小目标检测的能力。 --- ### 总结 综上所述,RT-DETRv3 的网络结构主要包括以下几个关键组件:基于 CNN 的辅助分支、自注意力扰动学习策略、共享权重解编码器分支以及混合编码器设计。这些技术创新共同推动了实时目标检测领域的发展,使其在复杂场景下的表现更加出色。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值