new file 的路径问题_FILE文件结构

这篇博客详细介绍了Linux系统中标准IO库的FILE结构,包括FILE的用途、内存分配、链表组织以及fopen、fread、fwrite、fclose等函数的工作原理,涉及到vtable在FILE结构中的作用和系统调用的使用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

FILE 结构 

400a5311348ba4a3888e778b46a84627.png

FILE 介绍 

FILE 在 Linux 系统的标准 IO 库中是用于描述文件的结构,称为文件流。FILE 结构在程序执行 fopen 等函数时会进行创建,并分配在堆中。我们常定义一个指向 FILE 结构的指针来接收这个返回值。

FILE 结构定义在 libio.h 中,如下所示

struct _IO_FILE {
int _flags; /* High-order word is _IO_MAGIC; rest is flags. */
#define _IO_file_flags _flags

/* The following pointers correspond to the C++ streambuf protocol. */
/* Note: Tk uses the _IO_read_ptr and _IO_read_end fields directly. */
char* _IO_read_ptr; /* Current read pointer */
char* _IO_read_end; /* End of get area. */
char* _IO_read_base; /* Start of putback+get area. */
char* _IO_write_base; /* Start of put area. */
char* _IO_write_ptr; /* Current put pointer. */
char* _IO_write_end; /* End of put area. */
char* _IO_buf_base; /* Start of reserve area. */
char* _IO_buf_end; /* End of reserve area. */
/* The following fields are used to support backing up and undo. */
char *_IO_save_base; /* Pointer to start of non-current get area. */
char *_IO_backup_base; /* Pointer to first valid character of backup area */
char *_IO_save_end; /* Pointer to end of non-current get area. */

struct _IO_marker *_markers;

struct _IO_FILE *_chain;

int _fileno;
#if 0
int _blksize;
#else
int _flags2;
#endif
_IO_off_t _old_offset; /* This used to be _offset but it's too small. */

#define __HAVE_COLUMN /* temporary */
/* 1+column number of pbase(); 0 is unknown. */
unsigned short _cur_column;
signed char _vtable_offset;
char _shortbuf[1];

/* char* _save_gptr; char* _save_egptr; */

_IO_lock_t *_lock;
#ifdef _IO_USE_OLD_IO_FILE
};

进程中的 FILE 结构会通过_chain 域彼此连接形成一个链表,链表头部用全局变量_IO_list_all 表示,通过这个值我们可以遍历所有的 FILE 结构。

在标准 I/O 库中,每个程序启动时有三个文件流是自动打开的:stdin、stdout、stderr。因此在初始状态下,_IO_list_all 指向了一个有这些文件流构成的链表,但是需要注意的是这三个文件流位于 libc.so 的数据段。而我们使用 fopen 创建的文件流是分配在堆内存上的。

我们可以在 libc.so 中找到 stdin\stdout\stderr 等符号,这些符号是指向 FILE 结构的指针,真正结构的符号是

_IO_2_1_stderr_
_IO_2_1_stdout_
_IO_2_1_stdin_

但是事实上_IO_FILE 结构外包裹着另一种结构_IO_FILE_plus,其中包含了一个重要的指针 vtable 指向了一系列函数指针。

在 libc2.23 版本下,32 位的 vtable 偏移为 0x94,64 位偏移为 0xd8

struct _IO_FILE_plus
{
_IO_FILE file;
IO_jump_t *vtable;
}

vtable 是 IO_jump_t 类型的指针,IO_jump_t 中保存了一些函数指针,在后面我们会看到在一系列标准 IO 函数中会调用这些函数指针

void * funcs[] = {
   1 NULL, // "extra word"
   2 NULL, // DUMMY
   3 exit, // finish
   4 NULL, // overflow
   5 NULL, // underflow
   6 NULL, // uflow
   7 NULL, // pbackfail
   
   8 NULL, // xsputn #printf
   9 NULL, // xsgetn
   10 NULL, // seekoff
   11 NULL, // seekpos
   12 NULL, // setbuf
   13 NULL, // sync
   14 NULL, // doallocate
   15 NULL, // read
   16 NULL, // write
   17 NULL, // seek
   18 pwn,  // close
   19 NULL, // stat
   20 NULL, // showmanyc
   21 NULL, // imbue
};

fread

fread 是标准 IO 库函数,作用是从文件流中读数据,函数原型如下

size_t fread ( void *buffer, size_t size, size_t count, FILE *stream) ;
  • buffer 存放读取数据的缓冲区。

  • size:指定每个记录的长度。

  • count:指定记录的个数。

  • stream:目标文件流。

  • 返回值:返回读取到数据缓冲区中的记录个数

fread 的代码位于 / libio/iofread.c 中,函数名为_IO_fread,但真正的功能实现在子函数_IO_sgetn 中。

_IO_size_t
_IO_fread (buf, size, count, fp)
void *buf;
_IO_size_t size;
_IO_size_t count;
_IO_FILE *fp;
{
...
bytes_read = _IO_sgetn (fp, (char *) buf, bytes_requested);
...
}

在_IO_sgetn 函数中会调用_IO_XSGETN,而_IO_XSGETN 是_IO_FILE_plus.vtable 中的函数指针,在调用这个函数时会首先取出 vtable 中的指针然后再进行调用。

_IO_size_t
_IO_sgetn (fp, data, n)
_IO_FILE *fp;
void *data;
_IO_size_t n;
{
return _IO_XSGETN (fp, data, n);
}

在默认情况下函数指针是指向_IO_file_xsgetn 函数的,

  if (fp->_IO_buf_base
&& want < (size_t) (fp->_IO_buf_end - fp->_IO_buf_base))
{
if (__underflow (fp) == EOF)
break;

continue;
}

fwrite

fwrite 同样是标准 IO 库函数,作用是向文件流写入数据,函数原型如下

size_t fwrite(const void* buffer, size_t size, size_t count, FILE* stream);
  • buffer: 是一个指针,对 fwrite 来说,是要写入数据的地址;

  • size: 要写入内容的单字节数;

  • count: 要进行写入 size 字节的数据项的个数;

  • stream: 目标文件指针;

  • 返回值:实际写入的数据项个数 count。

fwrite 的代码位于 / libio/iofwrite.c 中,函数名为_IO_fwrite。在_IO_fwrite 中主要是调用_IO_XSPUTN 来实现写入的功能。

根据前面对_IO_FILE_plus 的介绍,可知_IO_XSPUTN 位于_IO_FILE_plus 的 vtable 中,调用这个函数需要首先取出 vtable 中的指针,再跳过去进行调用。

written = _IO_sputn (fp, (const char *) buf, request);

在_IO_XSPUTN 对应的默认函数_IO_new_file_xsputn 中会调用同样位于 vtable 中的_IO_OVERFLOW

 /* Next flush the (full) buffer. */
if (_IO_OVERFLOW (f, EOF) == EOF)

_IO_OVERFLOW 默认对应的函数是_IO_new_file_overflow

if (ch == EOF)
return _IO_do_write (f, f->_IO_write_base,
f->_IO_write_ptr - f->_IO_write_base);
if (f->_IO_write_ptr == f->_IO_buf_end ) /* Buffer is really full */
if (_IO_do_flush (f) == EOF)
return EOF;

在_IO_new_file_overflow 内部最终会调用系统接口 write 函数

fopen

fopen 在标准 IO 库中用于打开文件,函数原型如下

FILE *fopen(char *filename, *type);
  • filename: 目标文件的路径

  • type: 打开方式的类型

  • 返回值: 返回一个文件指针

在 fopen 内部会创建 FILE 结构并进行一些初始化操作,下面来看一下这个过程

首先在 fopen 对应的函数__fopen_internal 内部会调用 malloc 函数,分配 FILE 结构的空间。因此我们可以获知 FILE 结构是存储在堆上的

*new_f = (struct locked_FILE *) malloc (sizeof (struct locked_FILE));

之后会为创建的 FILE 初始化 vtable,并调用_IO_file_init 进一步初始化操作

_IO_JUMPS (&new_f->fp) = &_IO_file_jumps;
_IO_file_init (&new_f->fp);

在_IO_file_init 函数的初始化操作中,会调用_IO_link_in 把新分配的 FILE 链入_IO_list_all 为起始的 FILE 链表中

void
_IO_link_in (fp)
struct _IO_FILE_plus *fp;
{
if ((fp->file._flags & _IO_LINKED) == 0)
{
fp->file._flags |= _IO_LINKED;
fp->file._chain = (_IO_FILE *) _IO_list_all;
_IO_list_all = fp;
++_IO_list_all_stamp;
}
}

之后__fopen_internal 函数会调用_IO_file_fopen 函数打开目标文件,_IO_file_fopen 会根据用户传入的打开模式进行打开操作,总之最后会调用到系统接口 open 函数,这里不再深入。

if (_IO_file_fopen ((_IO_FILE *) new_f, filename, mode, is32) != NULL)
return __fopen_maybe_mmap (&new_f->fp.file);

总结一下 fopen 的操作是

  • 使用 malloc 分配 FILE 结构

  • 设置 FILE 结构的 vtable

  • 初始化分配的 FILE 结构

  • 将初始化的 FILE 结构链入 FILE 结构链表中

  • 调用系统调用打开文件

fclose

fclose 是标准 IO 库中用于关闭已打开文件的函数,其作用与 fopen 相反。

int fclose(FILE *stream)

功能:关闭一个文件流,使用 fclose 就可以把缓冲区内最后剩余的数据输出到磁盘文件中,并释放文件指针和有关的缓冲区

fclose 首先会调用_IO_unlink_it 将指定的 FILE 从_chain 链表中脱链

if (fp->_IO_file_flags & _IO_IS_FILEBUF)
_IO_un_link ((struct _IO_FILE_plus *) fp);

之后会调用_IO_file_close_it 函数,_IO_file_close_it 会调用系统接口 close 关闭文件

if (fp->_IO_file_flags & _IO_IS_FILEBUF)
status = _IO_file_close_it (fp);

最后调用 vtable 中的_IO_FINISH,其对应的是_IO_file_finish 函数,其中会调用 free 函数释放之前分配的 FILE 结构

_IO_FINISH (fp);

printf/puts

printf 和 puts 是常用的输出函数,在 printf 的参数是以'\n'结束的纯字符串时,printf 会被优化为 puts 函数并去除换行符。

puts 在源码中实现的函数是_IO_puts,这个函数的操作与 fwrite 的流程大致相同,函数内部同样会调用 vtable 中的_IO_sputn,结果会执行_IO_new_file_xsputn,最后会调用到系统接口 write 函数。

printf 的调用栈回溯如下,同样是通过_IO_file_xsputn 实现

vfprintf+11
_IO_file_xsputn
_IO_file_overflow
funlockfile
_IO_file_write
write
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值