Minimum column number is 0

本文详细介绍了在实体类中使用@ExcelField注解的方法。该注解用于设置导出时字段的标题及排序顺序,有助于更好地组织和展示数据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在实体类中添加注解

@ExcelField(title="XX", align=2, sort=2)

title--导出时字段标题

sort--字段顺序

对下面代码梳理一个算法流程图function [z, varargout] = mskdemod(y, nSamp, varargin) %MSKDEMOD Minimum shift keying demodulation. % % Z = MSKDEMOD(Y,NSAMP) demodulates the complex envelope Y of a signal using % the minimum shift keying method. NSAMP denotes the number of samples per % symbol and must be a positive integer. For two dimensional signals, the % function treats each column of data as one channel. % % Z = MSKDEMOD(Y,NSAMP,DATAENC) specifies the data encoding method for MSK. % DATAENC can be either 'diff', specifying differentially encoded MSK, or % 'nondiff', specifying nondifferentially encoded MSK. The default is 'diff'. % The 'diff' and 'nondiff' methods are equivalent to conventional and precoded % MSK, respectively. % % Z = MSKDEMOD(Y,NSAMP,DATAENC,INI_PHASE) specifies the initial phase of the % demodulator. INI_PHASE is a row vector whose length is equal to the number % of channels in Y, and has default values of 0. Values in INI_PHASE must be % integer multiples of pi/2. To avoid overriding the default value of DATAENC, % set DATAENC=[]. % % Z = MSKDEMOD(Y,NSAMP,DATAENC,INI_PHASE,INI_STATE) specifies the initial % state of the demodulator. INI_STATE is complex, with length NSAMP, and % contains the last half symbol of the previously received signal. If Y is % two dimensional, then INI_STATE must have NSAMP rows, and the same number of % columns as Y. % % [Z,PHASEOUT] = MSKDEMOD(...) returns the final phase of Y for use in % demodulating a future signal. PHASEOUT has the same dimensions as INI_PHASE % above, and takes on the values 0, pi/2, pi, and 3*pi/2. % % [Z,PHASEOUT,STATEOUT] = MSKDEMOD(...) returns the final NSAMP values of Y % for use in demodulating a future signal. The format of STATEOUT is the same % as that of INI_STATE above. % % See also MSKMOD, FSKMOD, FSKDEMOD, comm.MSKDemodulator.
03-21
Problem Statement There is a grid with N × N N×N squares. We denote by ( i , j ) (i,j) the square at the i i-th row from the top and j j-th column from the left. Initially, a piece is placed on ( 1 , 1 ) (1,1). You may repeat the following operation any number of times: Let ( i , j ) (i,j) be the square the piece is currently on. Move the piece to the square whose distance from ( i , j ) (i,j) is exactly M M ​ . Here, we define the distance between square ( i , j ) (i,j) and square ( k , l ) (k,l) as ( i − k ) 2 + ( j − l ) 2 (i−k) 2 +(j−l) 2 ​ . For all squares ( i , j ) (i,j), determine if the piece can reach ( i , j ) (i,j). If it can, find the minimum number of operations required to do so. Constraints 1 ≤ N ≤ 400 1≤N≤400 1 ≤ M ≤ 10 6 1≤M≤10 6 All values in the input are integers. Input The input is given from Standard Input in the following format: N N M M Output Print N N lines. The i i-th line should contain N N integers. If the piece can reach ( i , j ) (i,j), the j j-th integer in the i i-th line should be the minimum number of operations required to do so; otherwise, it should be − 1 −1. 输入数据 1 3 1 输出数据 1 0 1 2 1 2 3 2 3 4 You can move the piece to four adjacent squares. For example, we can move the piece to ( 2 , 2 ) (2,2) with two operations as follows. The piece is now on ( 1 , 1 ) (1,1). The distance between ( 1 , 1 ) (1,1) and ( 1 , 2 ) (1,2) is exactly 1 1 ​ , so move the piece to ( 1 , 2 ) (1,2). The piece is now on ( 1 , 2 ) (1,2). The distance between ( 1 , 2 ) (1,2) and ( 2 , 2 ) (2,2) is exactly 1 1 ​ , so move the piece to ( 2 , 2 ) (2,2). 输入数据 2 10 5 输出数据 2 0 3 2 3 2 3 4 5 4 5 3 4 1 2 3 4 3 4 5 6 2 1 4 3 2 3 4 5 4 5 3 2 3 2 3 4 3 4 5 6 2 3 2 3 4 3 4 5 4 5 3 4 3 4 3 4 5 4 5 6 4 3 4 3 4 5 4 5 6 5 5 4 5 4 5 4 5 6 5 6 4 5 4 5 4 5 6 5 6 7 5 6 5 6 5 6 5 6 7 6 c++完成
最新发布
06-04
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

叫我豆豆哥哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值