【洛谷 P3842】[TJOI2007]线段(DP)

本文介绍了一种使用动态规划解决特定类型问题的方法——裸DP。通过定义状态f[i][0]和f[i][1],分别表示走完第i行并停在左端点和右端点所需的最少步数。文章提供了简洁的转移方程,并附带了一个实现示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

裸DP。感觉楼下的好复杂,我来补充一个易懂的题解。

f[i][0]表示走完第i行且停在第i行的左端点最少用的步数

f[i][1]同理,停在右端点的最少步数。

那么转移就很简单了,走完当前行且停到左端点,那么一定是从右端点过来的,那么从上一行左端点转移的话就是

f[i][0]=abs(上一行左端点的坐标-本行右端点的坐标+本行线段长度)

从上一行右端点转移同理。
不需要什么判断。边界f[1][0]=r[1]+r[1]-l[1]-1,f[1][1]=r[1]-1,然后直接搞就行了,时间复杂度O(n)。

#include <iostream>
#include <cstdio>
#define rep(i,m,n) for(int i=m;i<=n;++i)
using namespace std;
inline int read(){
    int s = 0, w = 1;
    char ch = getchar();
    while(ch < '0' || ch > '9'){if(ch == '-')w = -1;ch = getchar();}
    while(ch >= '0' && ch <= '9') s = s * 10 + ch - '0',ch = getchar();
    return s * w;
}
const int MAXN = 20010;
int n;
int l[MAXN], r[MAXN], f[MAXN][2];
int main(){
    n = read();
    rep(i, 1, n) l[i] = read(), r[i] = read();
    f[1][0] = r[1] + r[1] - l[1] - 1;
    f[1][1] = r[1] - 1;
    rep(i, 2, n)
       f[i][0] = min(f[i-1][0] + abs(l[i-1] - r[i]) + r[i] - l[i] + 1, f[i-1][1] + abs(r[i-1] - r[i]) + r[i] - l[i] + 1),
       f[i][1] = min(f[i-1][0] + abs(l[i-1] - l[i]) + r[i] - l[i] + 1, f[i-1][1] + abs(r[i-1] - l[i]) + r[i] - l[i] + 1);
    printf("%d\n", min(f[n][0] + n - l[n], f[n][1] + n - r[n]));
    //rep(i, 1, n){ rep(j, 0, 1) printf("f[%d][%d] = %d, ", i, j, f[i][j]); puts(""); }
    return 0;
}

转载于:https://www.cnblogs.com/Qihoo360/p/9468329.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值