POJ 2262 Goldbach's Conjecture

本文验证了哥德巴赫提出的猜想,即每一大于4的偶数都能表示为两个奇素数之和。通过算法筛选奇素数,并在输入的偶数范围内找到符合条件的奇素数对。实例展示了该猜想在特定数值下的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

I - Goldbach's Conjecture
Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u

Description

In 1742, Christian Goldbach, a German amateur mathematician, sent a letter to Leonhard Euler in which he made the following conjecture:
Every even number greater than 4 can be
written as the sum of two odd prime numbers.

For example:
8 = 3 + 5. Both 3 and 5 are odd prime numbers.
20 = 3 + 17 = 7 + 13.
42 = 5 + 37 = 11 + 31 = 13 + 29 = 19 + 23.

Today it is still unproven whether the conjecture is right. (Oh wait, I have the proof of course, but it is too long to write it on the margin of this page.)
Anyway, your task is now to verify Goldbach's conjecture for all even numbers less than a million.

Input

The input will contain one or more test cases.
Each test case consists of one even integer n with 6 <= n < 1000000.
Input will be terminated by a value of 0 for n.

Output

For each test case, print one line of the form n = a + b, where a and b are odd primes. Numbers and operators should be separated by exactly one blank like in the sample output below. If there is more than one pair of odd primes adding up to n, choose the pair where the difference b - a is maximized. If there is no such pair, print a line saying "Goldbach's conjecture is wrong."

Sample Input

8
20
42
0

Sample Output

8 = 3 + 5
20 = 3 + 17
42 = 5 + 37


View Code
 1 #include<stdio.h>
 2 int prime[101000],f[1010000],count=0 ;
 3 void getPrime(){
 4     for(int i=2;i<=1000000;i++)
 5         if(!f[i]){
 6             prime[count++] = i;
 7             for(__int64 j=(__int64)i*i;j<=1000000;j+=i)
 8                 f[j] = 1;
 9         }
10 }
11 int main(){
12     getPrime();
13     int n;
14     while(scanf("%d",&n) , n){
15         for(int i=0;i<count;i++)
16             if(f[n-prime[i]] == 0){
17                 printf("%d = %d + %d\n",n,prime[i],n-prime[i]) ;
18                 break;
19             }
20     }
21     return 0;
22 }

 

转载于:https://www.cnblogs.com/jun930123/archive/2012/08/16/2642315.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值