Flink on Yarn运行机制

本文详细解析了Flink on Yarn的运行机制,包括如何通过Yarn客户端连接ResourceManager,设置必要的环境变量,以及Flink集群在Yarn上的启动流程。介绍了从初始化配置、上传jar包至HDFS,到ApplicationMaster启动,再到TaskManagers的资源分配全过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Flink on Yarn运行机制

 

从图中可以看出,Yarn的客户端需要获取hadoop的配置信息,连接Yarn的ResourceManager。所以要有设置有 YARN_CONF_DIR或者HADOOP_CONF_DIR或者HADOOP_CONF_PATH,只要设置了其中一个环境变量,就会被读取。如果读取上述的变量失败了,那么将会选择hadoop_home的环境变量,都区成功将会尝试加载$HADOOP_HOME/etc/hadoop的配置文件。

1、当启动一个Flink Yarn会话时,客户端首先会检查本次请求的资源是否足够。资源足够将会上传包含HDFS配置信息和Flink的jar包到HDFS。

2、随后客户端会向Yarn发起请求,启动applicationMaster,随后NodeManager将会加载有配置信息和jar包,一旦完成,ApplicationMaster(AM)便启动。

3、当JobManager and AM 成功启动时,他们都属于同一个container,从而AM就能检索到JobManager的地址。此时会生成新的Flink配置信息以便TaskManagers能够连接到JobManager。同时,AM也提供Flink的WEB接口。用户可并行执行多个Flink会话。

4、随后,AM将会开始为分发从HDFS中下载的jar以及配置文件的container给TaskMangers.完成后Fink就完全启动并等待接收提交的job.

 

启动Flink cluster  on YARN 

./bin/yarn-session.sh -n 1 -jm 1024 -tm 4096

可以看到启动了1个TaskManager 给jm与tm分配的资源数

 

将Flink的配置与jar包上传至HDFS

 

提交于Application Master

启动完毕后,就可提交任务。

转载于:https://my.oschina.net/u/3005325/blog/2999424

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值