luogu P2181 对角线

题目大意: 给一个n边形,求出在所有任意三条对角线都不相交于同一个点的情况下,交点个数是多少。(即交点个数最多是多少)

分析: 题目很水,但是公式不好想。

由于任意三条对角线不会交于一点,所以所有的交点都是两条对角线相交而成的。这两条对角线来自四个点(可以当做求四边形的个数问题)。所以每有任意的四个点组合一下,就能产生一个新的交点。

所以答案是C(n,4)=n(n-1)(n-2)(n-3)/4!

小技巧:由于n(n-1)(n-2)(n-3)直接算会爆long long, 而答案其实是不会爆的。所以算 n(n-1)/2x(n-2)/3x(n-3)/4 (至于为什么每次除得尽,考虑质因数分解,n(n-1)一定有一个2,干掉后对3、4的因数是没有影响的。以此类推)

代码:

#include<bits/stdc++.h> 
using namespace std;
unsigned long long n;
int main()
{cin>>n;
cout<<n*(n-1)/2*(n-2)/3*(n-3)/4;
return 0;}

 

 

转载于:https://www.cnblogs.com/Miracevin/p/9031555.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值