The Design of HDFS

本文深入解析HDFS的设计理念,强调其适用于存储大量数据的高效特性,包括大规模文件的处理、流式数据访问模式以及如何在普通硬件上运行。讨论了HDFS在低延迟数据访问、大量小文件处理等方面的局限性。
HDFS is a filesystem designed for storing very large files with streaming data access patterns, running on clusters of commodity hardware. Let’s examine this statement in more detail: 

Very large files
“Very large” in this context means files that are hundreds of megabytes, gigabytes, or terabytes in size. There are Hadoop clusters running today that store petabytes of data.

Streaming data access
HDFS is built around the idea that the most efficient data processing pattern is a write-once, read-many-times pattern. A dataset is typically generated or copied from source, and then various analyses are performed on that dataset over time. Each analysis will involve a large proportion, if not all, of the dataset, so the time to read the whole dataset is more important than the latency in reading the first record.

Commodity hardware
Hadoop doesn’t require expensive, highly reliable hardware. It’s designed to run on clusters of commodity hardware (commonly available hardware that can be obtained from multiple vendors) for which the chance of node failure across the cluster is high, at least for large clusters. HDFS is designed to carry on working without a noticeable interruption to the user in the face of such failure. 

It is also worth examining the applications for which using HDFS does not work so well. Although this may change in the future, these are areas where HDFS is not a good fit today:

Low-latency data access
Applications that require low-latency access to data, in the tens of milliseconds range, will not work well with HDFS. Remember, HDFS is optimized for delivering a high throughput of data, and this may be at the expense of latency. HBase is currently a better choice for low-latency access.

Lots of small files
Because the namenode holds filesystem metadata in memory, the limit to the number of files in a filesystem is governed by the amount of memory on the namenode. As a rule of thumb, each file, directory, and block takes about 150 bytes. So, for example, if you had one million files, each taking one block, you would need at least 300 MB of memory. Although storing millions of files is feasible, billions is beyond the capability of current hardware.

Multiple writers, arbitrary file modifications
Files in HDFS may be written to by a single writer. Writes are always made at the end of the file. There is no support for multiple writers or for modifications at arbitrary offsets in the file. (These might be supported in the future, but they are likely to be relatively inefficient.) 
 
 
 
 
 
 
 
 

转载于:https://my.oschina.net/apdplat/blog/397149

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值