fzu 2107 Hua Rong Dao(状态压缩)

本文详细探讨了胡同道上人数排列的算法问题,通过实例介绍了如何利用递归和状态转移矩阵解决类似问题。重点分析了曹操、交叉将军、垂直将军和士兵在特定矩形空间中的排列方式,提供了求解复杂排列问题的有效方法。
Problem 2107 Hua Rong Dao

Accept: 106    Submit: 197
Time Limit: 1000 mSec    Memory Limit : 32768 KB

 Problem Description

Cao Cao was hunted down by thousands of enemy soldiers when he escaped from Hua Rong Dao. Assuming Hua Rong Dao is a narrow aisle (one N*4 rectangle), while Cao Cao can be regarded as one 2*2 grid. Cross general can be regarded as one 1*2 grid.Vertical general can be regarded as one 2*1 grid. Soldiers can be regarded as one 1*1 grid. Now Hua Rong Dao is full of people, no grid is empty.

 

There is only one Cao Cao. The number of Cross general, vertical general, and soldier is not fixed. How many ways can all the people stand?

 Input

There is a single integer T (T≤4) in the first line of the test data indicating that there are T test cases.

Then for each case, only one integer N (1≤N≤4) in a single line indicates the length of Hua Rong Dao.

 Output

For each test case, print the number of ways all the people can stand in a single line.

 Sample Input

212

 Sample Output

018

 Hint

Here are 2 possible ways for the Hua Rong Dao 2*4.

 Source

“高教社杯”第三届福建省大学生程序设计竞赛
#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
const int N=(1<<4);
int f[6][N][2]={0};//f[i][j][k]//放完第i-1行第i行的状态j,k=1放曹操
void dfs(int row,int col,int pre,int now,int cao,int k){
	if(col>=4){//放完4列,pre={1111}
		f[row][now][cao]+=k;//放完pre得到f[now]+=f[pre]
		//cout<<row<<" "<<now<<" "<<cao<<endl;
		return;
	}
	if(pre&(1<<col)){//第col已经放过
		dfs(row,col+1,pre,now,cao,k);
		return;
	}
	//a grid
	dfs(row,col+1,pre|(1<<col),now,cao,k);
	//a 1*2
	dfs(row,col+1,pre|(1<<col),now|(1<<col),cao,k);//放一竖,多出一块
	int t=(1<<col)|(1<<(col+1));
	if(col<3&&(pre&(1<<(col+1)))==0){
		//a 2*1
		dfs(row,col+1,pre|t,now,cao,k);
		//put caocao
		if(cao==0)dfs(row,col+1,pre|t,now|t,1,k);
	}
}
int main(){
	int i,j,k;
	f[0][N-1][0]=1;
	for(i=1;i<=5;i++)
		for(j=0;j<N;j++){
			if(f[i-1][j][0])dfs(i,0,j,0,0,f[i-1][j][0]);
			if(f[i-1][j][1])dfs(i,0,j,0,1,f[i-1][j][1]);
		}
	scanf("%d",&k);
	while(k--){
		scanf("%d",&i);
		printf("%d\n",f[i+1][0][1]);
	}
return 0;
}


 

标题基于Python的自主学习系统后端设计与实现AI更换标题第1章引言介绍自主学习系统的研究背景、意义、现状以及本文的研究方法和创新点。1.1研究背景与意义阐述自主学习系统在教育技术领域的重要性和应用价值。1.2国内外研究现状分析国内外在自主学习系统后端技术方面的研究进展。1.3研究方法与创新点概述本文采用Python技术栈的设计方法和系统创新点。第2章相关理论与技术总结自主学习系统后端开发的相关理论和技术基础。2.1自主学习系统理论阐述自主学习系统的定义、特征和理论基础。2.2Python后端技术栈介绍DjangoFlask等Python后端框架及其适用场景。2.3数据库技术讨论关系型和非关系型数据库在系统中的应用方案。第3章系统设计与实现详细介绍自主学习系统后端的设计方案和实现过程。3.1系统架构设计提出基于微服务的系统架构设计方案。3.2核心模块设计详细说明用户管理、学习资源管理、进度跟踪等核心模块设计。3.3关键技术实现阐述个性化推荐算法、学习行为分析等关键技术的实现。第4章系统测试与评估对系统进行功能测试和性能评估。4.1测试环境与方法介绍测试环境配置和采用的测试方法。4.2功能测试结果展示各功能模块的测试结果和问题修复情况。4.3性能评估分析分析系统在高并发等场景下的性能表现。第5章结论与展望总结研究成果并提出未来改进方向。5.1研究结论概括系统设计的主要成果和技术创新。5.2未来展望指出系统局限性并提出后续优化方向。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值