原题:
Accept: 147 Submit: 416
Time Limit: 1000 mSec Memory Limit : 32768 KB
Problem Description
Cao Cao was hunted down by thousands of enemy soldiers when he escaped from Hua Rong Dao. Assuming Hua Rong Dao is a narrow aisle (one N*4 rectangle), while Cao Cao can be regarded as one 2*2 grid. Cross general can be regarded as one 1*2 grid.Vertical general can be regarded as one 2*1 grid. Soldiers can be regarded as one 1*1 grid. Now Hua Rong Dao is full of people, no grid is empty.
There is only one Cao Cao. The number of Cross general, vertical general, and soldier is not fixed. How many ways can all the people stand?
Input
There is a single integer T (T≤4) in the first line of the test data indicating that there are T test cases.
Then for each case, only one integer N (1≤N≤4) in a single line indicates the length of Hua Rong Dao.
Output
Sample Input
Sample Output
Hint
Here are 2 possible ways for the Hua Rong Dao 2*4.

Source
“高教社杯”第三届福建省大学生程序设计竞赛题意+题解:
在一个n*4的矩阵中(n<=4),用一些砖块铺满,其中必须铺一个2*2的方砖,且只能铺一个,剩下的由三种 1*2 2*1 1*1的砖铺完,求一共有多少种铺设方案。
可以用状压做,不过最多就4*4,比赛的时候想直接数出来但是有数重的导致没做出来。但只状压要得用三进制表示砖块铺设确实有点过于繁琐了,我估计我也下不出来。但是后来看题解发现可以直接用搜索暴力数出来,也比较直观好想。
由于曹操的2*2砖比较特殊,就先枚举每一种曹操的位置。然后在剩下的图中一块一块的遍历,并尝试在这块中放那三种砖都试一次,如果能放,就dfs搜下去,搜完后再及时把砖块的铺设清空,进行下一种的搜索。
代码:
#include<cstdio>
#include<cstring>
#include<vector>
#include<algorithm>
using namespace std;
int vis[6][6];
int n;
int ans;
void dfs(int x,int y)//x,y表示当前搜索到的点
{
if(y>4)
{
x++;y=1;
if(x>n)
{
ans++;
return ;
}
}
if(vis[x][y])dfs(x,y+1);
if(!(vis[x][y]))
{
vis[x][y]=1;
dfs(x,y+1);
vis[x][y]=0;
}
if(!vis[x][y] && y+1<=4 && !vis[x][y+1])
{
vis[x][y]=vis[x][y+1]=1;
dfs(x,y+2);
vis[x][y]=vis[x][y+1]=0;
}
if(!vis[x][y] && x+1<=n && !vis[x+1][y])
{
vis[x][y]=vis[x+1][y]=1;
dfs(x,y+1);
vis[x][y]=vis[x+1][y]=0;
}
return ;
}
int main()
{
int t,i,j;
scanf("%d",&t);
while (t--)
{
scanf("%d",&n);
ans=0;
//暴力枚举曹操在的位置
for ( i = 1; i <= n-1 ; i++)
{
for ( j = 1; j <= 3 ; j++)
{
memset(vis,0,sizeof(vis));
vis[i][j]=vis[i+1][j]=vis[i][j+1]=vis[i+1][j+1]=1;
dfs(1,1);
}
}
printf("%d\n",ans);
}
return 0;
}