设 $n$ 阶方阵 $A=(\al_1,\cdots,\al_n)$ 非奇异, $B=(0,\al_2,\cdots,\al_n)$. 试证: $BA^{-1}$, $A^{-1}B$ 的秩均为 $n-1$, 且仅以 $0$ 为特征值.
[Everyday Mathematics]20150111
最新推荐文章于 2015-04-01 12:56:00 发布

设 $n$ 阶方阵 $A=(\al_1,\cdots,\al_n)$ 非奇异, $B=(0,\al_2,\cdots,\al_n)$. 试证: $BA^{-1}$, $A^{-1}B$ 的秩均为 $n-1$, 且仅以 $0$ 为特征值.