主要是利用快排的RANDOMIZED_PARTTITION()函数返回一个第q小的数,且第q小的数的坐标是绝对坐标而不是相对坐标,比如输入坐标范围为[p,r]的数组,第q小的数会返回p+q-1的坐标。
#include "stdafx.h"
#include<iostream>
#include <stdlib.h>
#include <time.h>
using namespace std;
#define SB -1
int RANDOM(int p, int r)
{
srand((unsigned)time(NULL));
return (rand() % (r - p + 1)) + p;
}
int partition(int a[], int p, int r) {
int x, i, t;
x = a[r];
i = p - 1;
t = 0;
for (int j = p; j <= r - 1; j++)
{
if (a[j]< x)
{
i = i + 1;
int ti;
ti = a[i];
a[i] = a[j];
a[j] = ti;
}
if (a[j] == x)
{
t = t + 1;
int ti;
ti = a[i + t];
a[i + t] = a[j];
a[j] = ti;
}
}
int tii;
tii = a[i + t + 1];
a[i + 1 + t] = a[r];
a[r] = tii;
return i + 1;
}
int random_partion(int a[], int p, int r)
{
int i = RANDOM(p, r);
int tii;
tii = a[i];
a[i] = a[r];
a[r] = tii;
return partition(a, p, r);
}
/*int random_select(int a[], int p, int r, int i) //随机选择算法递归实现
{
if (p == r)
return a[p];
int q;
q = random_partion(a, p, r);
int k = q - p + 1;
if (i == k)
return a[q];
else if (i < k)
return random_select(a, p, q - 1, i);
else
return random_select(a, q+1, r, i-k);
}*/
int random_select2(int a[], int p, int r, int i) //随机选择算法循环实现
{
if (p == r)
return a[p];
int q;
int head = p, end = r;
q = random_partion(a, head, end);
while (i != q) {
if (i < q) {
end = q - 1;
if (end > r)end = r;
q = random_partion(a, head, end);
}
else {
head = q + 1;
if (head > r)head = r;
q = random_partion(a, head, end);
}
}
return a[q];
}
int main()
{
int a[] = { SB ,3 ,2 ,4 ,5 ,6 ,7,8,9,10,11,12,13}; //SB为哨兵,不包括在选择项
cout << random_select2(a, 1, 12, 7);
while (1);
return 0;
}