题意:给一棵树,有三个操作:①询问两点$(x,y)$之间的距离②把$x$和原来的父亲断开并连到它的$h$级祖先,作为新父亲最右的儿子③询问与根节点距离为$k$的点中最右的点是哪个点
用出栈入栈序$s_{1\cdots 2n}$来维护整棵树,入栈记$1$出栈记$-1$,那么一个节点$x$的深度就是$\sum\limits_{i=1}^{in_x}s_x$
每个平衡树节点记1.这个节点是出栈还是入栈2.子树和3.最大前缀和4.最小前缀和,那么我们就可以在平衡树上二分找到最右的深度为$d$的节点(注意如果找到的是出栈点应该返回父亲,因为有个$-1$)
对于操作①,把$(in_x,in_y)$提出来,那么这个区间内深度最小的节点就是$lca_{x,y}$
对于操作②,找到那个$h$级祖先,直接序列移动即可
对于操作③,直接找
为了使我的splay不残废就用splay写了一下
注意因为邻接表的性质,加边要倒着加
#include<stdio.h>
int ch[200010][2],fa[200010],v[200010],s[200010],mx[200010],mn[200010],h[100010],nex[100010],to[100010],pa[100010],tmp[100010],p[200010],M,rt;
void add(int a,int b){
M++;
to[M]=b;
nex[M]=h[a];
h[a]=M;
}
void dfs(int x){
M++;
p[M]=(x<<1)-1;
v[(x<<1)-1]=1;
for(int i=h[x];i;i=nex[i]){
pa[to[i]]=x;
dfs(to[i]);
}
M++;
p[M]=x<<1;
v[x<<1]=-1;
}
#define ls ch[x][0]
#define rs ch[x][1]
int max(int a,int b){return a>b?a:b;}
int min(int a,int b){return a<b?a:b;}
void pushup(int x){
s[x]=s[ls]+s[rs]+v[x];
mx[x]=max(mx[ls],s[ls]+v[x]+max(mx[rs],0));
mn[x]=min(mn[ls],s[ls]+v[x]+min(mn[rs],0));
}
int build(int l,int r){
int mid=(l+r)>>1;
int&x=p[mid];
if(l<mid){
ls=build(l,mid-1);
fa[ls]=x;
}
if(mid<r){
rs=build(mid+1,r);
fa[rs]=x;
}
pushup(x);
return x;
}
void rot(int x){
int y,z,f,B;
y=fa[x];
z=fa[y];
f=(ch[y][0]==x);
B=ch[x][f];
fa[x]=z;
fa[y]=x;
if(B)fa[B]=y;
ch[x][f]=y;
ch[y][f^1]=B;
if(ch[z][0]==y)ch[z][0]=x;
if(ch[z][1]==y)ch[z][1]=x;
pushup(y);
pushup(x);
}
void splay(int x,int gl){
int y,z;
while(fa[x]!=gl){
y=fa[x];
z=fa[y];
if(z!=gl)rot((ch[z][0]==y&&ch[y][0]==x)||(ch[z][1]==y&&ch[y][1]==x)?y:x);
rot(x);
}
}
int getdis(int x,int y){
x=(x<<1)-1;
y=(y<<1)-1;
int dx,dy,dl;
splay(x,0);
dx=s[ls]+v[x];
splay(y,0);
dy=s[ch[y][0]]+v[y];
splay(x,0);
splay(y,x);
rt=x;
dl=min(dx,dy);
if(ls==y)
dl=min(dl,s[ch[y][0]]+v[y]+mn[ch[y][1]]);
else
dl=min(dl,s[ls]+v[x]+mn[ch[y][0]]);
return dx+dy-(dl<<1);
}
int find(int x,int d){
if(mx[rs]>=d-s[ls]-v[x]&&mn[rs]<=d-s[ls]-v[x])return find(rs,d-s[ls]-v[x]);
if(s[ls]+v[x]==d)return(x&1)?(x+1)>>1:pa[x>>1];
return find(ls,d);
}
int pre(int x){
splay(x,0);
for(x=ls;rs;x=rs);
return x;
}
int nx(int x){
splay(x,0);
for(x=rs;ls;x=ls);
return x;
}
void change(int u,int h){
int x=(u<<1)-1,L,R,t;
splay(x,0);
pa[u]=find(ls,s[ls]+v[x]-h);
L=pre(x);
R=nx(u<<1);
splay(L,0);
splay(R,L);
t=ch[R][0];
ch[R][0]=0;
pushup(R);
pushup(L);
L=pre(pa[u]<<1);
R=(pa[u]<<1);
splay(L,0);
splay(R,L);
ch[R][0]=t;
fa[t]=R;
pushup(R);
pushup(L);
rt=L;
}
#define inf 1000000000
int main(){
mx[0]=-inf;
mn[0]=inf;
int n,m,i,x,y;
scanf("%d%d",&n,&m);
for(i=1;i<=n;i++){
scanf("%d",&y);
for(x=1;x<=y;x++)scanf("%d",tmp+x);
for(x=y;x>0;x--)add(i,tmp[x]);
}
M=0;
dfs(1);
rt=build(1,n<<1);
while(m--){
scanf("%d%d",&i,&x);
if(i!=3)scanf("%d",&y);
if(i==1)printf("%d\n",getdis(x,y));
if(i==2)change(x,y);
if(i==3)printf("%d\n",find(rt,x+1));
}
}