kafka0.8 vs spark2.2.0
<!-- sparkStreaming 和kafka整合的依赖 0-8_2.11 --> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-streaming-kafka-0-8_2.11</artifactId> <version>${spark.version}</version> </dependency> <dependency> <groupId>org.apache.kafka</groupId> <!--<artifactId>kafka_2.10</artifactId>--> <version>0.8.2.1</version> <version>0.10.0.0</version> </dependency>
package com.xp.cn.streaming import kafka.common.TopicAndPartition import kafka.message.MessageAndMetadata import kafka.serializer.StringDecoder import kafka.utils.{ZKGroupTopicDirs, ZkUtils} import org.I0Itec.zkclient.ZkClient import org.apache.spark.SparkConf import org.apache.spark.rdd.RDD import org.apache.spark.streaming.dstream.{DStream, InputDStream} import org.apache.spark.streaming.kafka.{HasOffsetRanges, KafkaUtils, OffsetRange} import org.apache.spark.streaming.{Duration, StreamingContext} /** * Created by zx on 2017/7/31. */ object KafkaDirectWordCountV2 { def main(args: Array[String]): Unit = { //指定组名 val group = "g001" //创建SparkConf val conf = new SparkConf().setAppName("KafkaDirectWordCount").setMaster("local[2]") //创建SparkStreaming,并设置间隔时间 val ssc = new StreamingContext(conf, Duration(5000)) //指定消费的 topic 名字 val topic = "wwcc" //指定kafka的broker地址(sparkStream的Task直连到kafka的分区上,用更加底层的API消费,效率更高) val brokerList = "xupan001:9092,xupan001:9092,xupan001:9092" //指定zk的地址,后期更新消费的偏移量时使用(以后可以使用Redis、MySQL来记录偏移量) val zkQuorum = "xupan001:2181,xupan001:2181,xupan001:2181" //创建 stream 时使用的 topic 名字集合,SparkStreaming可同时消费多个topic val topics: Set[String] = Set(topic) //创建一个 ZKGroupTopicDirs 对象,其实是指定往zk中写入数据的目录,用于保存偏移量 val topicDirs = new ZKGroupTopicDirs(group, topic) //获取 zookeeper 中的路径 "/g001/offsets/wordcount/" val zkTopicPath = s"${topicDirs.consumerOffsetDir}" //准备kafka的参数 val kafkaParams = Map( "metadata.broker.list" -> brokerList, "group.id" -> group, //从头开始读取数据 "auto.offset.reset" -> kafka.api.OffsetRequest.SmallestTimeString ) //zookeeper 的host 和 ip,创建一个 client,用于跟新偏移量量的 //是zookeeper的客户端,可以从zk中读取偏移量数据,并更新偏移量 val zkClient = new ZkClient(zkQuorum) //查询该路径下是否字节点(默认有字节点为我们自己保存不同 partition 时生成的) // /g001/offsets/wordcount/0/10001" // /g001/offsets/wordcount/1/30001" // /g001/offsets/wordcount/2/10001" //zkTopicPath -> /g001/offsets/wordcount/ val children = zkClient.countChildren(zkTopicPath) var kafkaStream: InputDStream[(String, String)] = null //如果 zookeeper 中有保存 offset,我们会利用这个 offset 作为 kafkaStream 的起始位置 var fromOffsets: Map[TopicAndPartition, Long] = Map() //如果保存过 offset if (children > 0) { for (i <- 0 until children) { // /g001/offsets/wordcount/0/10001 // /g001/offsets/wordcount/0 val partitionOffset = zkClient.readData[String](s"$zkTopicPath/${i}") // wordcount/0 val tp = TopicAndPartition(topic, i) //将不同 partition 对应的 offset 增加到 fromOffsets 中 // wordcount/0 -> 10001 fromOffsets += (tp -> partitionOffset.toLong) } //Key: kafka的key values: "hello tom hello jerry" //这个会将 kafka 的消息进行 transform,最终 kafak 的数据都会变成 (kafka的key, message) 这样的 tuple val messageHandler = (mmd: MessageAndMetadata[String, String]) => (mmd.key(), mmd.message()) //通过KafkaUtils创建直连的DStream(fromOffsets参数的作用是:按照前面计算好了的偏移量继续消费数据) //[String, String, StringDecoder, StringDecoder, (String, String)] // key value key的解码方式 value的解码方式 kafkaStream = KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder, (String, String)](ssc, kafkaParams, fromOffsets, messageHandler) } else { //如果未保存,根据 kafkaParam 的配置使用最新(largest)或者最旧的(smallest) offset kafkaStream = KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder](ssc, kafkaParams, topics) } //偏移量的范围 var offsetRanges = Array[OffsetRange]() //直连方式只有在KafkaDStream的RDD中才能获取偏移量,那么就不能到调用DStream的Transformation //所以只能子在kafkaStream调用foreachRDD,获取RDD的偏移量,然后就是对RDD进行操作了 //依次迭代KafkaDStream中的KafkaRDD //foreachRDD触发的实际操作是DStream转换,kafkaStream.foreachRDD这一步实际上是在Driver中调用的 //rdd.foreach是在Executor中执行的 kafkaStream.foreachRDD { kafkaRDD => //只有KafkaRDD可以强转成HasOffsetRanges,并获取到偏移量 offsetRanges = kafkaRDD.asInstanceOf[HasOffsetRanges].offsetRanges val lines: RDD[String] = kafkaRDD.map(_._2) //对RDD进行操作,触发Action //foreachPartition在Executor中执行 lines.foreachPartition(partition => partition.foreach(x => { println(x) }) ) for (o <- offsetRanges) { // /g001/offsets/wordcount/0 val zkPath = s"${topicDirs.consumerOffsetDir}/${o.partition}" //将该 partition 的 offset 保存到 zookeeper // /g001/offsets/wordcount/0/20000 ZkUtils.updatePersistentPath(zkClient, zkPath, o.untilOffset.toString) } } ssc.start() ssc.awaitTermination() } }
kafka1.0 vs spark2.2.0
<!-- kafka --> <dependency> <groupId>org.apache.kafka</groupId> <artifactId>kafka_2.10</artifactId> <!--<version>0.8.2.1</version>--> <version>0.10.0.0</version> </dependency> <!-- sparkStreaming 和kafka整合的依赖 0-10_2.11 --> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-streaming-kafka-0-10_2.11</artifactId> <version>${spark.version}</version> </dependency>
package com.xp.cn.streaming import org.apache.kafka.common.serialization.StringDeserializer import org.apache.log4j.{Level, Logger} import org.apache.spark.streaming.kafka010.{HasOffsetRanges, CanCommitOffsets, KafkaUtils} import org.apache.spark.streaming.kafka010.LocationStrategies.PreferConsistent import org.apache.spark.streaming.kafka010.ConsumerStrategies.Subscribe import org.apache.spark.streaming.{Seconds, StreamingContext} import org.apache.spark.{SparkConf} /** * Created by xupan on 2017/12/18. * spark streaming kafka_2.10-0.10.2.1 * 不要像0.8那样需要手动把偏移量更新到Zookeeper中 * 1.0默认把偏移量更新到kafka中 */ object KafkaStreamingV2 { def main(args: Array[String]) { Logger.getLogger("org.apache.spark").setLevel(Level.ERROR) //创建conf,spark streaming至少要启动两个线程,一个负责接受数据,一个负责处理数据 val conf = new SparkConf().setAppName("KafkaStreamingV2").setMaster("local[4]") //创建StreamingContext,每隔10秒产生一个批次 val ssc = new StreamingContext(conf, Seconds(10)) val group = "v2group" val topic = "v2topic" //配置Kafka参数 val kafkaParams = Map[String,Object]( "bootstrap.servers" -> "xupan001:9092,xupan002:9092,xupan003:9092", "key.deserializer" -> classOf[StringDeserializer], "value.deserializer" -> classOf[StringDeserializer], "group.id" -> group, "auto.offset.reset" -> "earliest",//kafka中没有偏移量从头开始读,有就从偏移量开始读 "enable.auto.commit" -> {false:java.lang.Boolean}//不是自动提交 ) //可以读取多个topic val topics = Array(topic) //用直连方式读取Kafka数据,在Kafka中读取偏移量 val stream = KafkaUtils.createDirectStream[String,String]( ssc, PreferConsistent,//位置策略(如果Kafka和spark程序在同一台机器,会从最优位置读取数据【当前位置】) Subscribe[String,String](topics,kafkaParams)//订阅策略(可以指定用正则的方式读取topic【topic-*】) ) stream.foreachRDD(rdd => { if (!rdd.isEmpty()) { val offsetRanges = rdd.asInstanceOf[HasOffsetRanges].offsetRanges //====================在下面写业务逻辑============================ rdd.foreachPartition(part => { part.foreach(line => { val value = line.value() val key = line.key() println("key : " + key + " value : " + value) }) }) //====================在上面写业务逻辑============================ //commitAsync(offsetRanges: Array[OffsetRange]) stream.asInstanceOf[CanCommitOffsets].commitAsync(offsetRanges) } }) ssc.start() ssc.awaitTermination() } }