[LeetCode] H-Index

本文探讨了计算H指数的算法优化问题,通过比较三种不同的实现方式,从时间复杂度和运行效率的角度出发,详细分析了每种方法的优劣,并最终提出了一种线性时间复杂度的解决方案,显著提高了计算效率。

If you've read the Wikipedia article of H-Index, there is already a neat formula there for computing the h-index, which is written below using the notations of the problem. Note that in the formula below, citations is sorted in descending order and i is 1-indexed.

h = max_i(min(i, citations[i]))

Now you will easily write down the following code.

 1 class Solution {
 2 public:
 3     int hIndex(vector<int>& citations) {
 4         sort(citations.rbegin(), citations.rend());
 5         int h = 0, i = 0;
 6         for (int c : citations)
 7             h = max(h, min(++i, c));
 8         return h;
 9     }
10 };

This code takes 20ms. In fact, rbegin and rend seems to be relatively slow. An alternative is to sort citations in normal ascending order and then count all those papers with citations larger than their indexes, as what Stefan does here. Now the code runs in 12ms.

 1 class Solution {
 2 public:
 3     int hIndex(vector<int>& citations) {
 4         sort(citations.begin(), citations.end()); 
 5         int h = 0, i = citations.size();
 6         for (int c : citations)
 7             h += (c > --i);
 8         return h;
 9     }
10 };

Well, both the above codes are in O(nlogn) time. Is there a linear time solution? The answer is yes: refer to this post if you like :-)

 1 class Solution {
 2 public:
 3     int hIndex(vector<int>& citations) {
 4         int n = citations.size(), h = 0;
 5         int* counts = new int[n + 1]();
 6         for (int c : citations)
 7             counts[min(c, n)]++;
 8         for (int i = n; i; i--) {
 9             h += counts[i];
10             if (h >= i) return i;
11         } 
12         return h;
13     }
14 };

This code uses both linear time and space, and runs in 8ms. Wow, we've moved a long way from the original 20ms version :-)

转载于:https://www.cnblogs.com/jcliBlogger/p/4782463.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值