AtCoder Grand Contest 025 Problem D - Choosing Points

本文介绍了一种解决特定点分布问题的方法,即在一个2n x 2n的网格中找到n²个点,这些点之间的距离既不是√d1也不是√d2。通过分析d1和d2模4的结果来确定点的分布规律。

题目大意:输入$n,d1,d2$,你要找到$n^2$个整点 x, y 满足$0 \leqslant x, y<2n$。并且找到的任意两个点距离,既不是$\sqrt{d1}$,也不是 $\sqrt{d2}$。

题解:如果$d mod 2=1$,如果$a^2+b^2=d$,a和b一定一奇一偶,按国际象棋黑白染色即可。如果$d mod 4=2$,如果$a^2+b^2=d$,a和b一定都是奇数,一行黑色,一行白色即可。如果$d mod 4=0$,把$2×2$的区域看成一个大格子,对$d/4$进行如上考虑即可。

卡点:

 

C++ Code:

#include<cstdio>
using namespace std;
int n,d1,d2,ans;
int s[610][610];
void run(int d){
	int tmp=0;
	while (!(d%4))d/=4,tmp++;
	if (d&1){
		for (int i=0;i<n*2;i++)
			for (int j=0;j<n*2;j++)
				if ((i>>tmp)+(j>>tmp)&1)s[i][j]=1;
	}else{
		for (int i=0;i<n*2;i++)
			for (int j=0;j<n*2;j++)
				if ((i>>tmp)&1)s[i][j]=1;
	}
}
int main(){
	scanf("%d%d%d",&n,&d1,&d2);
	run(d1),run(d2);
	for (int i=0;i<2*n;i++)
		for (int j=0;j<2*n;j++)
			if (ans<n*n&&!s[i][j])
				printf("%d %d\n",i,j),ans++;
	return 0;
} 

  

转载于:https://www.cnblogs.com/Memory-of-winter/p/9269705.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值