1、反向传播思想:
计算出输出与标签间的损失函数值,然后计算其相对于每个神经元的梯度,根据梯度方向更新权值。
(1)将训练集数据输入到ANN的输入层,经过隐藏层,最后达到输出层并输出结果,这是ANN的前向传播过程;
(2)由于ANN的输出结果与实际结果有误差,则计算估计值与实际值之间的误差,并将该误差从输出层向隐藏层反向传播,直至传播到输入层;
(3)在反向传播的过程中,根据误差调整各种参数的值;不断迭代上述过程,直至收敛。
2、无监督逐层训练:预训练:每次训练一层隐结点。训练时将上一层隐结点的输出作为输入,而本层隐结点的输出作为 下一层隐结点的输入。在预训练结束后,再对整个网络进行微调训练。
3、DNN:指深度神经网络,与RNN循环神经网络、CNN卷积神经网络的区别就是,DNN特指全连接的神经元结构,并不包含卷积单元 或时间上的关联。
一、DBN:(预训练+微调)
思想:整个网络看成是多个RBM的堆叠,在使用无监督逐层训练时,首先训练第一层,然后将第一层预训练好的隐结点视为第二层的输入节点,对第二层进行预训练,各层预训练完成后,再用BP算法对整个网络进行训练。
整体解释:预训练+微调 的做法可视为将大量参数分组,对每组先找到局部看起来比较好的位置,然后再基于这些局部较优的结果联合起来进行全局寻优。好处:利用了模型大量参数所提供的自由度,有效的节省了训练开销。
我有几张阿里云幸运券分享给你,用券购买或者升级阿里云相应产品会有特惠惊喜哦!把想要买的产品的幸运券都领走吧!快下手,马上就要抢光了。
(补充:是一个概率生成模型,与传统的判别神经网络不同的是,生成模型建立了观察数据和标签之间的联合分布,而判别模型只评估了条件概率。
DBN遇到的问题:需要为训练提供一个有标签的样本集;学习过程较慢;不适当的参数选择导致学习收敛于局部最优解。
)
二、CNN:(局部感知+权共享机制:让一组神经元使用相同的连接权)
提出:全连接的结构下会引起参数数量的膨胀,容易过拟合且局部最优。图像中有固有的局部模式可以利用,所以,提出了CNN,并不是所有上下层神经元都能直接相连,而是通过“卷积核”作为中介。同一个卷积核在所有图像内都是共享的,图像通过卷积操作后仍然保留原来的位置关系。
复合多个“卷积层”和“采样层”对输入信号进行加工,然后再连接层实现与输出目标之间的映射。多层的目的:一层卷积学到的特征往往是局部的,层数越高,学到的特征就越全局化。
CNN两大神器:
1、局部感知:一般认为图像的空间联系是局部的像素联系比较密切,而距离较远的像素相关性较弱,因此,每个神经元没必要对全局图像进行感知,只要对局部进行感知,然后在更高层将局部的信息综合起来得到全局信息。利用卷积层实现:(特征映射,每个特征映射是一个神经元阵列):从上一层通过局部卷积滤波器提取局部特征。卷积层紧跟着一个用来求局部平均与二次提取的计算层,这种二次特征提取结构减少了特征分辨率。
2、参数共享:在局部连接中,每个神经元的参数都是一样的,即:同一个卷积核在图像中都是共享的。(理解:卷积操作实际是在提取一个个局部信息,而局部信息的一些统计特性和其他部分是一样的,也就意味着这部分学到的特征也可以用到另一部分上。所以对图像上的所有位置,都能使用同样的学习特征。)卷积核共享有个问题:提取特征不充分,可以通过增加多个卷积核来弥补,可以学习多种特征。
3、采样(池化)层:在通过卷积得到特征后,希望利用这些特征进行分类。基于局部相关性原理进行亚采样,在减少数据量的同时保留有用信息。(压缩数据和参数的量,减少过拟合)(max-polling 和average-polling)
可用BP算法训练,训练中,无论是卷积层还是采样层,每一组神经元都是用相同的连接权。
优点:限制了参数的个数并挖掘了局部结构的这个特点,减少了复杂度。