【NLP11-迁移学习】

1、了解迁移学习中的有关概念
1.1、预训练模型(pretrained model)

一般情况下预训练模型都是大型模型,具备复杂的网络结构,众多的参数量,以及在足够大的数据集下进行训练而产生的模型。在NLP领域,预训练模型往往是语言模型,因为语言模型的训练是无监督的,可以获得大规模语料,同时语言模型又是许多典型的NLP任务的基础,如机器翻译、文本生成、阅读理解等。常见的预训练模型有BERT,GPT,roBERTa,transformer-XL等。

1.2、微调(Fine-tuning)

根据给定的预训练模型,改变它的部分参数或者为其新增部分输出结构后,通过在小部分数据集上训练,来使整个模型更好的适用特定任务

1.3、微调脚本(Fine-tuning script)

实现微调过程的代码文件。这些脚本文件中,应包括对预训练模型的调用,对微调参数的选定以及对微调结构的更改等。同时,因为微调是一个训练过程,她同样需要一些超参数的设定,以及损失函数和优化器的选取等,因此微调脚本往往也包含了整个迁移学习的过程。

1.4、关于微调脚本的说明

一般情况下,微调脚本应该由不同的任务类型开发者自己编写,但是由于目前研究NLP任务类型(分类、提取、生成)以及对应的微调输出结构都是有限的,有些微调方式已经在很多数据集上被验证有效的,因此微调脚本也可以使用已经完成的规范脚本

2、两种迁移方式<
"sgmediation.zip" 是一个包含 UCLA(加利福尼亚大学洛杉矶分校)开发的 sgmediation 插件的压缩包。该插件专为统计分析软件 Stata 设计,用于进行中介效应分析。在社会科学、心理学、市场营销等领域,中介效应分析是一种关键的统计方法,它帮助研究人员探究变量之间的因果关系,尤其是中间变量如何影响因变量与自变量之间的关系。Stata 是一款广泛使用的统计分析软件,具备众多命令和用户编写的程序来拓展其功能,sgmediation 插件便是其中之一。它能让用户在 Stata 中轻松开展中介效应分析,无需编写复杂代码。 下载并解压 "sgmediation.zip" 后,需将解压得到的 "sgmediation" 文件移至 Stata 的 ado 目录结构中。ado(ado 目录并非“adolescent data organization”缩写,而是 Stata 的自定义命令存放目录)目录是 Stata 存放自定义命令的地方,应将文件放置于 "ado\base\s" 子目录下。这样,Stata 启动时会自动加载该目录下的所有 ado 文件,使 "sgmediation" 命令在 Stata 命令行中可用。 使用 sgmediation 插件的步骤如下:1. 安装插件:将解压后的 "sgmediation" 文件放入 Stata 的 ado 目录。如果 Stata 安装路径是 C:\Program Files\Stata\ado\base,则需将文件复制到 C:\Program Files\Stata\ado\base\s。2. 启动 Stata:打开 Stata,确保软件已更新至最新版本,以便识别新添加的 ado 文件。3. 加载插件:启动 Stata 后,在命令行输入 ado update sgmediation,以确保插件已加载并更新至最新版本。4
PyTorch是一个流行的深度学习框架,常用于计算机视觉和自然语言处理任务。迁移学习(Transfer Learning)是利用预训练模型在一个大任务(比如ImageNet中的大量图像分类)上获得的知识,将其应用到一个小规模但相关的任务中的一种方法,例如精灵(如宝可梦)的分类。 在PyTorch中,你可以使用已经训练好的卷积神经网络(CNN),如ResNet、VGG或Inception等,作为基础模型来进行迁移学习。对于宝可梦精灵分类,首先你需要: 1. **准备数据集**:收集并整理包含宝可梦图片的数据集,确保它们被正确地标注为各个类别。 2. **加载预训练模型**:从 torchvision.models 中选择一个适合的模型,如resnet18、resnet50等,并设置其参数为不可训练(`.eval()`)以保持前几层不变。 3. **特征提取**:将模型应用于每个输入图像,仅取输出的特征向量(通常是`model.fc`之前的最后一层)而不是最终的分类结果。 4. **添加新层**:由于原始模型的最后一层可能不适合新的分类任务,通常会添加一层或多层全连接层(Linear Layer)以及适当的激活函数。 5. **微调**:如果希望进一步提升性能,可以选择部分或全部冻结的预训练层进行微调(`.train()`),调整这些层的权重以适应新任务。 6. **训练和评估**:使用训练集对模型进行训练,并用验证集监控性能,然后在测试集上评估模型的实际效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值