Codeforces Round #383 D

Dokhtar-kosh路径问题
本文介绍了一道关于寻找树中特定类型的最长路径的问题,这类路径上的字符能组成回文串。通过使用二进制表示字符出现次数,并结合树状结构的特性,利用DSU on Tree算法进行高效求解。

传送门

Description

Arpa has a rooted tree (connected acyclic graph) consisting of n vertices. The vertices are numbered 1 through n, the vertex 1 is the root. There is a letter written on each edge of this tree. Mehrdad is a fan of Dokhtar-kosh things. He call a string Dokhtar-kosh, if we can shuffle the characters in string such that it becomes palindrome.

8bd086da221c8c8f5fd626222cb191915dac80c6.png

He asks Arpa, for each vertex v, what is the length of the longest simple path in subtree of v that form a Dokhtar-kosh string.

题意:一棵根为\(1\) 的树,每条边上有一个字符(\(a-v\)\(22\)种)。 一条简单路径被称为\(Dokhtar-kosh\)当且仅当路径上的字符经过重新排序后可以变成一个回文串。 求每个子树中最长的\(Dokhtar-kosh\)路径的长度。

Solution

所求的路径其实就是只有\(0/1\)个字符出现奇数次的字符串

发现最多只有\(22\)种字符,所以可以把一个点到根路径上字符的出现情况压成一个二进制数\(val_i\)

一个数位\(i\)\(1\)表示路径上编号\(i\)的字符出现了奇数次

所以一条路径合法等价于\(val_a \ \ xor \ \ val_b=0 \ \ or \ \ 2^i\)

发现是静态的子树信息维护,可以采用\(dsu\ on \ tree\)

每个点只计算以这个点为\(LCA\)的最长路径,可以一个一个子树合并进来

维护一个\(mxdep_i\),表示\(val_x=i\)的最大的\(dep_x\)

对于\(dsu\ on \ tree\)

如果一个关于子树集合的询问满足

  1. 往一个集合里插入一个点是\(O(1)\)

  2. 删除元素都是到空为止,且每个点的删除为\(O(1)\)

那么对于这个询问就可以做到\(O(nlog_2n)\)

因为每个点只会在轻边处被删除,因而最多被删除\(O(log_2n)\)


Code 

#include<bits/stdc++.h>
#define ll long long
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)>(b)?(b):(a))
#define reg register
using namespace std;
inline int read()
{
    int x=0,f=1;char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9'){x=(x<<3)+(x<<1)+ch-'0';ch=getchar();}
    return x*f;
}
const int MN=5e5+5;
struct edge{int to,w,nex;}e[MN]; 
int n,en,hr[MN];
inline void ins(int x,int y,int w){e[++en]=(edge){y,w,hr[x]};hr[x]=en;}
int val[MN],dep[MN],mx[MN],siz[MN];
void dfs1(int x)
{
    siz[x]=1;reg int i;
    for(i=hr[x];i;i=e[i].nex)
        val[e[i].to]=val[x]^(1<<e[i].w),
        dep[e[i].to]=dep[x]+1,
        dfs1(e[i].to),siz[x]+=siz[e[i].to],(siz[e[i].to]>siz[mx[x]])?mx[x]=e[i].to:0;
}
#define ri reg int i
int cx,mx_dep[1<<22],ans[MN],Dec;
void _cal(int x)
{
    if(mx_dep[val[x]]) cx=max(cx,dep[x]+mx_dep[val[x]]-Dec);
    for(ri=0;i<22;++i)if(mx_dep[val[x]^(1<<i)])cx=max(cx,mx_dep[val[x]^(1<<i)]+dep[x]-Dec);
}
void _upd(int x){mx_dep[val[x]]=max(dep[x],mx_dep[val[x]]);}
void cal(int x){_cal(x);for(ri=hr[x];i;i=e[i].nex)cal(e[i].to);}
void upd(int x){_upd(x);for(ri=hr[x];i;i=e[i].nex)upd(e[i].to);}
void clr(int x){mx_dep[val[x]]=0;for(ri=hr[x];i;i=e[i].nex)clr(e[i].to);}
void dfs2(int x,bool kep=0)
{
    reg int i;
    for(i=hr[x];i;i=e[i].nex) if(e[i].to!=mx[x]) dfs2(e[i].to);
    if(mx[x]) dfs2(mx[x],1);Dec=dep[x]<<1;
    for(i=hr[x];i;i=e[i].nex)cx=max(ans[e[i].to],cx);
    for(i=hr[x];i;i=e[i].nex)if(e[i].to^mx[x])cal(e[i].to),upd(e[i].to);
    _cal(x);_upd(x);ans[x]=cx;if(!kep)clr(x),cx=0;
}
int main()
{
    n=read();reg int i,x;
    for(i=2;i<=n;++i)x=read(),ins(x,i,getchar()-'a');
    dfs1(1);dfs2(1);
    for(i=1;i<=n;++i) printf("%d ",ans[i]);
    return 0;
}



Blog来自PaperCloud,未经允许,请勿转载,TKS!

转载于:https://www.cnblogs.com/PaperCloud/p/10661183.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值