hdu4709求三角形面积

本文探讨了一个经典的几何问题:如何通过连接牧场上的树木形成一个尽可能小但不为零的围栏区域,以帮助懒惰的牧童安全地放牧。文章详细解析了问题的算法解决方案,包括如何避免三点共线的情况,以及如何计算并选取最小面积的三角形。

 

Herding

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 702    Accepted Submission(s): 174

Problem Description
Little John is herding his father's cattles. As a lazy boy, he cannot tolerate chasing the cattles all the time to avoid unnecessary omission. Luckily, he notice that there were N trees in the meadow numbered from 1 to N, and calculated their cartesian coordinates (Xi, Yi). To herding his cattles safely, the easiest way is to connect some of the trees (with different numbers, of course) with fences, and the close region they formed would be herding area. Little John wants the area of this region to be as small as possible, and it could not be zero, of course.
 

 

Input
The first line contains the number of test cases T( T<=25 ). Following lines are the scenarios of each test case.
The first line of each test case contains one integer N( 1<=N<=100 ). The following N lines describe the coordinates of the trees. Each of these lines will contain two float numbers Xi and Yi( -1000<=Xi, Yi<=1000 ) representing the coordinates of the corresponding tree. The coordinates of the trees will not coincide with each other.
 

 

Output
For each test case, please output one number rounded to 2 digits after the decimal point representing the area of the smallest region. Or output "Impossible"(without quotations), if it do not exists such a region.
 

 

Sample Input
1 4 -1.00 0.00 0.00 -3.00 2.00 0.00 2.00 2.00
 

 

Sample Output
2.00
 

 

Source

分析:求最小面积就是求所有点构成的所有三角形的最小面积,但是要注意选择构成三角形的三个点不能在一条线上,横,竖,斜不能在一条线上

 

 

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<string>
#include<queue>
#include<algorithm>
#include<map>
#include<cmath>
#include<iomanip>
#define INF 99999999
using namespace std;

const int MAX=100+10;
double s[MAX][2];

double calculate(int i,int j,int k){
	return fabs((s[j][0]-s[i][0])*(s[k][1]-s[i][1])-(s[k][0]-s[i][0])*(s[j][1]-s[i][1]))/2;
}

int main(){
	int t,n;
	scanf("%d",&t);
	while(t--){
		scanf("%d",&n);
		for(int i=0;i<n;++i)scanf("%lf%lf",&s[i][0],&s[i][1]);
		double sum=INF*1.0;
		for(int i=0;i<n;++i){
			for(int j=i+1;j<n;++j){
				for(int k=j+1;k<n;++k){
					if(s[i][1] == s[j][1] && s[j][1] == s[k][1])continue;
					if((s[j][1]-s[i][1])/(s[j][0]-s[i][0]) == (s[k][1]-s[j][1])/(s[k][0]-s[j][0]))continue;
					sum=min(sum,calculate(i,j,k));
				}
			}
		}
		if(sum == INF*1.0)printf("Impossible\n");
		else printf("%.2lf\n",sum);
	}
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值