POJ-1125-Stockbroker Grapevine

本文介绍了一种用于在特定社交网络中高效传播信息的算法。该算法考虑了信任度和联系人结构,通过Floyd算法确定最佳的起始节点及最短传播时间。

问题描述

Stockbrokers are known to overreact to rumours. You have been contracted to develop a method of spreading disinformation amongst the stockbrokers to give your employer the tactical edge in the stock market. For maximum effect, you have to spread the rumours in the fastest possible way.

Unfortunately for you, stockbrokers only trust information coming from their "Trusted sources" This means you have to take into account the structure of their contacts when starting a rumour. It takes a certain amount of time for a specific stockbroker to pass the rumour on to each of his colleagues. Your task will be to write a program that tells you which stockbroker to choose as your starting point for the rumour, as well as the time it will take for the rumour to spread throughout the stockbroker community. This duration is measured as the time needed for the last person to receive the information.

输入

Your program will input data for different sets of stockbrokers. Each set starts with a line with the number of stockbrokers. Following this is a line for each stockbroker which contains the number of people who they have contact with, who these people are, and the time taken for them to pass the message to each person. The format of each stockbroker line is as follows: The line starts with the number of contacts (n), followed by n pairs of integers, one pair for each contact. Each pair lists first a number referring to the contact (e.g. a '1' means person number one in the set), followed by the time in minutes taken to pass a message to that person. There are no special punctuation symbols or spacing rules.

Each person is numbered 1 through to the number of stockbrokers. The time taken to pass the message on will be between 1 and 10 minutes (inclusive), and the number of contacts will range between 0 and one less than the number of stockbrokers. The number of stockbrokers will range from 1 to 100. The input is terminated by a set of stockbrokers containing 0 (zero) people.

输出

For each set of data, your program must output a single line containing the person who results in the fastest message transmission, and how long before the last person will receive any given message after you give it to this person, measured in integer minutes.
It is possible that your program will receive a network of connections that excludes some persons, i.e. some people may be unreachable. If your program detects such a broken network, simply output the message "disjoint". Note that the time taken to pass the message from person A to person B is not necessarily the same as the time taken to pass it from B to A, if such transmission is possible at all.

样例输入

3
2 2 4 3 5
2 1 2 3 6
2 1 2 2 2
5
3 4 4 2 8 5 3
1 5 8
4 1 6 4 10 2 7 5 2
0
2 2 5 1 5
0

样例输出

3 2
3 10

求某点连通全图所需的最小时间
确定这个点,并输出最小时间
用Floyd
 1 #include <stdio.h>
 2 #include <string.h>
 3 #include <algorithm>
 4 using namespace std;
 5 const int inf=1<<29;
 6 const int N=1100;
 7 int u,v,m,n;
 8 int w[N][N];
 9 int main()
10 {
11     while(scanf("%d",&n)!=EOF&&n)
12     {
13         for(int i=1; i<=n; i++)
14         {
15             for(int j=1; j<=n; j++)
16             {
17                 w[i][j]=inf;
18             }
19         }
20         int tmp;
21         for(int i=1; i<=n; i++)
22         {
23             scanf("%d",&m);
24             for(int j=1; j<=m; j++)
25             {
26                 scanf("%d%d",&v,&tmp);//要先定义一个变量存权值
27                 w[i][v] = tmp;//再把权值付给w[i][v],否则会出错!
28             }
29         }
30          for(int k=1;k<=n;k++)
31          {
32              for(int i=1;i<=n;i++)
33              {
34                  for(int j=1;j<=n;j++)
35                  {
36                      if(k!=i&&k!=j&&w[i][k]!=inf&&w[k][j]!=inf)
37                      {
38                         w[i][j]=min(w[i][j],w[i][k]+w[k][j]);
39                      }
40                  }
41              }
42          }
43         int ma,mi=inf,x;
44         for(int i=1;i<=n;i++)
45         {
46             ma=-inf;
47             for(int j=1;j<=n;j++)
48             {
49                 if(j==i)
50                     continue;
51                 if(w[i][j]>ma)//找出每一行间的最大花费时间,因为每个点是可以同时向其他多个点进行连通的
52                   {
53                        ma=w[i][j];
54                   }
55             }
56             if(ma<mi)
57             {
58                 mi=ma;//找出各行之间最小花费时间,即为最小值
59                 x=i;
60             }
61         }
62         if(mi==inf)//存在断点,不能够接通
63             printf("disjoint\n");
64         else
65         printf("%d %d\n",x,mi);
66     }
67     return 0;
68 }

 

转载于:https://www.cnblogs.com/tianmin123/p/4789824.html

内容概要:本文系统介绍了算术优化算法(AOA)的基本原理、核心思想及Python实现方法,并通过图像分割的实际案例展示了其应用价值。AOA是一种基于种群的元启发式算法,其核心思想来源于四则运算,利用乘除运算进行全局勘探,加减运算进行局部开发,通过数学优化器加速函数(MOA)和数学优化概率(MOP)动态控制搜索过程,在全局探索与局部开发之间实现平衡。文章详细解析了算法的初始化、勘探与开发阶段的更新策略,并提供了完整的Python代码实现,结合Rastrigin函数进行测试验证。进一步地,以Flask框架搭建前后端分离系统,将AOA应用于图像分割任务,展示了其在实际工程中的可行性与高效性。最后,通过收敛速度、寻优精度等指标评估算法性能,并提出自适应参数调整、模型优化和并行计算等改进策略。; 适合人群:具备一定Python编程基础和优化算法基础知识的高校学生、科研人员及工程技术人员,尤其适合从事人工智能、图像处理、智能优化等领域的从业者;; 使用场景及目标:①理解元启发式算法的设计思想与实现机制;②掌握AOA在函数优化、图像分割等实际问题中的建模与求解方法;③学习如何将优化算法集成到Web系统中实现工程化应用;④为算法性能评估与改进提供实践参考; 阅读建议:建议读者结合代码逐行调试,深入理解算法流程中MOA与MOP的作用机制,尝试在不同测试函数上运行算法以观察性能差异,并可进一步扩展图像分割模块,引入更复杂的预处理或后处理技术以提升分割效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值