uoj#273. 【清华集训2016】你的生命已如风中残烛(组合数学)

本文探讨了一道经典的打表题,通过将普通牌位置视为-1,转换为求解特定排列下前缀和大于等于1的问题。利用圆排列和组合数学原理,给出了求解方案数的公式,并附带了C++实现代码。

传送门

一道打表题

我们把那些普通牌的位置看成\(-1\),那么就是要求有多少个排列满足前缀和大于等于\(1\)

考虑在最后放一个\(-1\),那么就是除了\(m+1\)的位置前缀和都要大于等于\(1\)

\(m+1\)个数的圆排列的方案数为\(m!\),然后对于每一个圆排列,肯定存在一个前缀和最小且最右边的位置,那么它后面的所有位置肯定前缀和都大于等于\(1\),而对于这个位置如果不把它放最后肯定会有前缀和小于\(1\)

所以对于每一种圆排列有且仅有一种摆放方式合法

然而此时最后的这个\(-1\)不一定是我们加进去的\(-1\),可能是原来排列里的,于是要除以\(-1\)的个数\(m+1-n\)

综上答案为\(\frac{m!}{m+1-n}\)

//minamoto
#include<cstdio>
#include<cstring>
#include<map>
#define R register
#define fp(i,a,b) for(R int i=a,I=b+1;i<I;++i)
#define fd(i,a,b) for(R int i=a,I=b-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
const int P=998244353;
inline int mul(R int x,R int y){return 1ll*x*y-1ll*x*y/P*P;}
int ksm(R int x,R int y){
    R int res=1;
    for(;y;y>>=1,x=mul(x,x))if(y&1)res=mul(res,x);
    return res;
}
int n,m,x,res=1;
int main(){
//  freopen("testdata.in","r",stdin);
    scanf("%d",&n);
    fp(i,1,n)scanf("%d",&x),m+=x;
    fp(i,2,m)res=mul(res,i);
    res=mul(res,ksm(m-n+1,P-2));
    printf("%d\n",res);
    return 0;
}

转载于:https://www.cnblogs.com/bztMinamoto/p/10240247.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值