poj 3020 Antenna Placement 二分图匹配

本文探讨了瑞典第五代移动电话网建设中4DAir基站的最优放置问题,旨在使用最少数量的基站实现所有兴趣点的信号覆盖。通过构建二分图匹配模型,解决了这一覆盖优化问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

点击打开链接题目链接

Antenna Placement
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 7386 Accepted: 3651

Description

The Global Aerial Research Centre has been allotted the task of building the fifth generation of mobile phone nets in Sweden. The most striking reason why they got the job, is their discovery of a new, highly noise resistant, antenna. It is called 4DAir, and comes in four types. Each type can only transmit and receive signals in a direction aligned with a (slightly skewed) latitudinal and longitudinal grid, because of the interacting electromagnetic field of the earth. The four types correspond to antennas operating in the directions north, west, south, and east, respectively. Below is an example picture of places of interest, depicted by twelve small rings, and nine 4DAir antennas depicted by ellipses covering them. 
 
Obviously, it is desirable to use as few antennas as possible, but still provide coverage for each place of interest. We model the problem as follows: Let A be a rectangular matrix describing the surface of Sweden, where an entry of A either is a point of interest, which must be covered by at least one antenna, or empty space. Antennas can only be positioned at an entry in A. When an antenna is placed at row r and column c, this entry is considered covered, but also one of the neighbouring entries (c+1,r),(c,r+1),(c-1,r), or (c,r-1), is covered depending on the type chosen for this particular antenna. What is the least number of antennas for which there exists a placement in A such that all points of interest are covered? 

Input

On the first row of input is a single positive integer n, specifying the number of scenarios that follow. Each scenario begins with a row containing two positive integers h and w, with 1 <= h <= 40 and 0 < w <= 10. Thereafter is a matrix presented, describing the points of interest in Sweden in the form of h lines, each containing w characters from the set ['*','o']. A '*'-character symbolises a point of interest, whereas a 'o'-character represents open space. 

Output

For each scenario, output the minimum number of antennas necessary to cover all '*'-entries in the scenario's matrix, on a row of its own.

Sample Input

2
7 9
ooo**oooo
**oo*ooo*
o*oo**o**
ooooooooo
*******oo
o*o*oo*oo
*******oo
10 1
*
*
*
o
*
*
*
*
*
*

Sample Output

17
5

**代表城市

在城市上能够放基站 一个基站能够提供2个相邻城市的信号

问让全部城市都有信号最少须要的基站数

二分图匹配

代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int maps[444][444];
bool g[444][444];
int link[444];
bool vis[444];
char str[444][444];
int cnt;
int h,w;
void build(){
    for(int i=0;i<h;i++){
        for(int j=0;j<w;j++){
            if(str[i][j]=='*'){
                if(i>0&&str[i-1][j]=='*')
                    g[maps[i][j]][maps[i-1][j]]=g[maps[i-1][j]][maps[i][j]]=1;
                if(i<h-1&&str[i+1][j]=='*')
                    g[maps[i][j]][maps[i+1][j]]=g[maps[i+1][j]][maps[i][j]]=1;
                if(j>0&&str[i][j-1]=='*')
                    g[maps[i][j]][maps[i][j-1]]=g[maps[i][j-1]][maps[i][j]]=1;
                if(j<w-1&&str[i][j+1]=='*')
                    g[maps[i][j]][maps[i][j+1]]=g[maps[i][j+1]][maps[i][j]]=1;
            }
        }
    }
}
bool finds(int x){
    for(int j=0;j<cnt;j++){
        if(g[x][j]&&!vis[j]){
            vis[j]=1;
            if(link[j]==-1||finds(link[j])){
                link[j]=x;
                return 1;
            }
        }
    }
    return 0;
}
int main(){
    int t;
    scanf("%d",&t);
    while(t--){
        cnt=0;
        scanf("%d %d",&h,&w);
        for(int i=0;i<h;i++){
            scanf("%s",str[i]);
            for(int j=0;j<w;j++){
                if(str[i][j]=='*')
                    maps[i][j]=cnt++;
            }
        }
        memset(g,0,sizeof(g));
        build();
        int res=0;  
        memset(link,-1,sizeof(link));
        for(int i=0;i<cnt;i++){
            memset(vis,0,sizeof(vis));
            if(finds(i))
                res++;
        }
        printf("%d\n",cnt-res/2);
    }
}


资源下载链接为: https://pan.quark.cn/s/22ca96b7bd39 在当今的软件开发领域,自动化构建与发布是提升开发效率和项目质量的关键环节。Jenkins Pipeline作为一种强大的自动化工具,能够有效助力Java项目的快速构建、测试及部署。本文将详细介绍如何利用Jenkins Pipeline实现Java项目的自动化构建与发布。 Jenkins Pipeline简介 Jenkins Pipeline是运行在Jenkins上的一套工作流框架,它将原本分散在单个或多个节点上独立运行的任务串联起来,实现复杂流程的编排与可视化。它是Jenkins 2.X的核心特性之一,推动了Jenkins从持续集成(CI)向持续交付(CD)及DevOps的转变。 创建Pipeline项目 要使用Jenkins Pipeline自动化构建发布Java项目,首先需要创建Pipeline项目。具体步骤如下: 登录Jenkins,点击“新建项”,选择“Pipeline”。 输入项目名称和描述,点击“确定”。 在Pipeline脚本中定义项目字典、发版脚本和预发布脚本。 编写Pipeline脚本 Pipeline脚本是Jenkins Pipeline的核心,用于定义自动化构建和发布的流程。以下是一个简单的Pipeline脚本示例: 在上述脚本中,定义了四个阶段:Checkout、Build、Push package和Deploy/Rollback。每个阶段都可以根据实际需求进行配置和调整。 通过Jenkins Pipeline自动化构建发布Java项目,可以显著提升开发效率和项目质量。借助Pipeline,我们能够轻松实现自动化构建、测试和部署,从而提高项目的整体质量和可靠性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值