How can R and Hadoop be used together?

本文探讨了R与Hadoop结合使用的局限性,指出R的优势在于丰富的统计和可视化库,但这些库通常是非分布式的,并且操作内存中的数据。因此,在面对大数据集时,R的性能可能受限,且无法通过Hadoop直接提升。文章还提到,尽管一些分布式数据库供应商声称提供解决方案,但实际上它们只能在小数据集上并行运行R。

Referer: http://www.quora.com/How-can-R-and-Hadoop-be-used-together/answer/Jay-Kreps?srid=OVd9&share=1

 

Another way to answer this question is that they don't really integrate very well.

The advantage of R is not its syntax but rather the incredible library of primitives for visualization and statistics. These libraries are fundamentally non-distributed, and almost always operate on data resident in memory. So, for example, if you are finding R's glm method slow (or completely infeasible) on a particular dataset, there is really no way to make it run faster with Hadoop.

The reason it is important to point this out is that
1. Transparently distributed R is every data geeks wet dream.
2. I have sat through numerous presentations from distributed database vendors claiming to provide this.

What hadoop and database vendors can provide is the ability to run R in parallel on lots of little data sets. Virtually none of the libraries will work on a data set larger than memory.

 

Referer: http://www.quora.com/How-can-R-and-Hadoop-be-used-together/answer/Jay-Kreps?srid=OVd9&share=1

声明:如有转载本博文章,请注明出处。您的支持是我的动力!文章部分内容来自互联网,本人不负任何法律责任。
本文转自bourneli博客园博客,原文链接:http://www.cnblogs.com/bourneli/p/3233398.html ,如需转载请自行联系原作者
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值