CDQ分治

前言:

之前一直想学来着。。。一直都忘了

这次vj上老师放了几道分治题,刚好有CDQ

开始我啥也不会,听说是主席树,就去学了学

危险行为,请勿模仿!

然后。。。就溜回来了

从三位偏序敲起到动态逆序对,杠了我两天。。。

还是没学会?(不存在的)

现在写篇博客整理一下


正文:

一.CDQ分治是怎样的算法?

CDQ分治算法是基于时间的分治算法  ——李煜东算法竞赛进阶指南

光看这句话,相信你会和我一样一脸懵逼

没事还有下句

剩下的我懒得打了,相信作为一个OIer你一定有lyd的这本书吧(要第二版哦!),翻到238页,再食用本博客最佳QAQ

我的理解如下:

对于一个修改"A"(以下简称A)以及询问"B"(以下简称B),

它们在时间序列中的位置分别为a,b(这里我们令$a \lt b$)

假设我们当前处理的区间为[l,r],mid为区间中点(即 $mid=(l+r)/2$ )

那么a,b的位置无非只有三种:

1.a在序列左侧,b在序列右侧(\(a<mid,b>mid\))

2.a,b都在序列左侧$(a<mid,b<mid)$

3.a,b都在序列右侧\((a>mid,b>mid)\)

那我们来在各个情况下考虑A对B的影响:

1.此时我们会直接跨过mid,计算"影响"

2.会一直递归左区间,那么一定会递归到一次,能使A,B满足1(也就是a在序列左侧,b在序列右侧)

3.同2

因此,CDQ分治能做到不重不漏(因为每一对修改与询问都只会在有且仅有一次的递归中跨过中点)

(看到这里你可能还是不知道这意味着什么,

但当你结合下列例题后思考,收获会更大)

二.例题

1.洛谷P3810 【模板】三维偏序(陌上花开)

这一题是非常经典的CDQ板子题

题目就是要保证\(a_j \leq a_i,b_j \leq b_i,c_j \leq c_i\)

思路的话还是比较直接,

第一维排序,第二维CDQ,第三维树状数组

代码:

#include<bits/stdc++.h>
#define R register int
#define gc getchar
using namespace std;
int _n,n,k,c[200005];
int cnt[200005];
int rd()
{
    int ans=0,flag=1;
    char ch=gc();
    while((ch>'9'||ch<'0')&&ch!='-')ch=gc();
    if(ch=='-')flag=-1,ch=gc();
    while(ch>='0'&&ch<='9')ans=ans*10+ch-48,ch=gc();
    return ans*flag;
}
struct node{
    int ans,x,y,z,w;
}a[100005],b[100005];
bool cmpx(node a,node b)
{
    return a.x<b.x||(a.x==b.x&&a.y<b.y)||(a.x==b.x&&a.y==b.y&&a.z<b.z);
}
bool cmpy(node a,node b)
{
    return a.y<b.y||(a.y==b.y&&a.z<b.z);
}
bool equal(node a,node b)
{
    return a.x==b.x&&a.y==b.y&&a.z==b.z;
}
int ask(int x)
{
    int ans=0;
    for(;x;x-=x&-x)ans+=c[x];
    return ans;
}
void add(int x,int d)
{
    for(;x<=k;x+=x&-x)c[x]+=d;
}
void CDQ(int l,int r)
{
    if(l==r)return;
    int mid=(l+r)>>1;
    CDQ(l,mid);
    CDQ(mid+1,r);
    sort(a+l,a+mid+1,cmpy);
    sort(a+mid+1,a+r+1,cmpy);
    int i=mid+1,j=l;
    while(i<=r)
    {
        while(a[j].y<=a[i].y&&j<=mid)
        {
            add(a[j].z,a[j].w);
            j++;
        }
        a[i].ans+=ask(a[i].z);
        i++;
    }
    for(i=l;i<j;i++)add(a[i].z,-a[i].w);
}
int main()
{
    _n=rd(),k=rd();
    for(R i=1;i<=_n;i++)
    {
        b[i].x=rd(),b[i].y=rd(),b[i].z=rd();
    }
    sort(b+1,b+_n+1,cmpx);
    for(R i=1;i<=_n;i++)
    {
        int mul=1;
        while(equal(b[i],b[i+1])&&i<_n)
        {
            i++;
            mul++;
        }
        a[++n]=b[i];
        a[n].w=mul;
    }
    CDQ(1,n);
    for(R i=1;i<=n;i++)
    {
        cnt[a[i].ans+a[i].w-1]+=a[i].w;
    }
    for(R i=0;i<_n;i++)
    {
        cout<<cnt[i]<<endl;
    }
    return 0;
}

2.洛谷P3157 [CQOI2011]动态逆序对

题目思路也很简单,

逆序对怎么求你总知道吧。。。

就先求个逆序对

再对每个删去的元素删去他的贡献(这个你都没了,那么与它构成的逆序对也不复存在)

但是你会发现会删去某些"不需要删去的点"

出现这种情况的原因是一个点在删贡献时必然会删掉某些比他还先删的点

那么这些点就咕咕咕了

所以你不能直接去减.

考虑对于每一个i,

他能影响到的点j必然满足:

\(pos_i>pos_j,val_i<val_j,deletetime_i>deletetime_j或者pos_i<pos_j,val_i>val_j,deletetime_i>deletetime_j\)

 于是就可以用三维偏序的思路来做这一部分

至于什么树状数组要清空,数组要开longlong,第一个括号要换行这些细节我就不说了

还有代码的一些注释我会陆续加上,目前还比较丑,请见谅!

代码:

#include<bits/stdc++.h>
#define R register int
#define gc getchar
#define ll long long 
using namespace std;
ll n,m,c[100005],Map[100005],Del[100005],ans;
ll rd()
{
    ll ans=0,flag=1;
    char ch=gc();
    while((ch<'0'||ch>'9')&&ch!='-')ch=gc();
    if(ch=='-')flag=-1,ch=gc();
    while(ch>='0'&&ch<='9')ans=ans*10+ch-48,ch=gc();
    return ans*flag;
}
struct node{
    int t,pos,val;
    ll ans1,ans2;
}a[100005];
ll b[100005];
bool cmp_pos(node a,node b){return a.pos>b.pos;}
bool cmp_pos2(node a,node b){return a.pos<b.pos;}
bool cmp(node aa,node bb){return aa.pos<bb.pos;}
bool cmp_time1(node a,node b){return a.t>b.t;}
bool cmp_time2(node a,node b){return a.t<b.t;}
bool cmp_val1(node a,node b){return a.val>b.val;}
bool cmp_val2(node a,node b){return a.val<b.val;}
void add(ll x,ll d){for(;x<=n;x+=x&-x)c[x]+=d;}
ll ask(ll x){ll ans=0;for(;x;x-=x&-x)ans+=c[x];return ans;}
void CDQ1(ll l,ll r)
{
    if(l==r)return;
    ll mid=(l+r)>>1;
    CDQ1(l,mid);CDQ1(mid+1,r);
    //sort(a+l,a+mid+1,cmp_val1);
    //sort(a+mid,a+r+1,cmp_val1);
    ll i=l,j=mid+1;
    while(j<=r)
    {
        while(i<=mid&&a[i].val>a[j].val){add(a[i].pos,1),i++;}
        a[j].ans1+=ask(a[j].pos);
        j++;
    }
    for(ll j=l;j<i;j++)add(a[j].pos,-1);
    sort(a+l,a+r+1,cmp_val1);
}
void CDQ2(ll l,ll r)
{
    if(l==r)return;
    ll mid=(l+r)>>1;
    CDQ2(l,mid);CDQ2(mid+1,r);
    //sort(a+l,a+mid+1,cmp_pos);
    //sort(a+mid,a+r+1,cmp_pos);
    ll i=l,j=mid+1;
    while(j<=r)
    {
        while(i<=mid&&a[i].pos>a[j].pos){add(a[i].val,1),i++;}
        a[j].ans2+=ask(a[j].val);
        j++;
    }
    for(ll j=l;j<i;j++)add(a[j].val,-1);
    sort(a+l,a+r+1,cmp_pos);
}
int main()
{
    n=rd();
    m=rd();
    for(R i=1;i<=n;i++)
    {
        b[i]=rd();
        a[b[i]].pos=i;
        a[b[i]].val=b[i];
        //Map[a[i].x]=i;
        ans+=i-1-ask(b[i]);
        add(b[i],1);
        //a[i].ans+=ask()
    }
    memset(c,0,sizeof(c));
    for(R i=1;i<=m;i++)
    {
        ll t=rd();
        a[t].t=i;
    }
    sort(a+1,a+n+1,cmp_pos2);
    for (int i=1,j=m+1;i<=n;i++)
    {
        if (a[i].t==0) a[i].t=j++;
        //x这一维是删除的时间,这里赋值成inf也对
    }
    sort(a+1,a+n+1,cmp_time1);
    CDQ1(1,n);
    sort(a+1,a+n+1,cmp_time1);
    CDQ2(1,n);
    sort(a+1,a+n+1,cmp_time2);
    for(R i=1;i<=m;i++)
    {
        cout<<ans<<endl;
        //cout<<a[i].ans1<<' '<<a[i].ans2<<endl;
        ans=ans-(ll)a[i].ans1-(ll)a[i].ans2;
    }
    return 0;
}

应该会upd吧,我也不好说

 

 

转载于:https://www.cnblogs.com/Zenyz/p/9892649.html

<think>首先,用户的问题是关于CDQ分治算法的基本原理及其应用场景。我需要根据系统级指令来构建我的回答。 系统级指令关键点: - 所有行内数学表达式必须使用$...$格式。 - 独立公式必须使用$$...$$格式并单独成段。 - LaTeX语法正确。 - 使用中文回答。 - 生成相关问题。 - 回答中引用的段落末尾自然地添加引用标识。 - 回答结构清晰,帮助用户逐步解决问题,保证真实可靠。 参考站内引用: - 引用[1]:关于分治思想的描述,包括分块、递归等。 - 引用[2]:关于书籍的引用,不相关。 - 引用[3]:关于下载资源的链接,不相关。 用户真正的需求是理解CDQ分治的概念和原理,所以我需要专注于CDQ分治CDQ分治的基本原理: - CDQ分治是由陈丹琦(Chen Danqi)提出的一种算法,用于处理偏序问题,如三维偏序问题。 - 它是分治思想的一种应用,特别适合解决离线查询问题。 - 核心思想:将问题分成子问题,递归解决,然后合并结果,处理跨越子问题的部分。 应用场景: - 三维偏序问题:例如,给定点集,统计每个点满足某些条件的点数。 - 动态规划优化:如斜率优化等。 - 其他离线查询问题。 我的回答结构: 1. **介绍CDQ分治**:简要说明其背景和目的。 2. **基本原理**:解释算法步骤,使用数学表达式描述。 3. **应用场景**:列出常见应用。 4. **生成相关问题**:在最后添加相关问题。 5. **添加引用**:在引用段落末尾自然添加引用标识。 数学表达式: - 行内数学:如变量、点坐标等,使用$...$。 - 独立公式:如方程,使用$$...$$。 例如: - 行内:点$P_i = (a_i, b_i, c_i)$ - 独立:偏序关系公式。 生成相关问题: - 基于CDQ分治,如"CDQ分治如何优化三维偏序问题?"或"CDQ分治的时间复杂度分析?" 确保回答真实可靠: - 基于算法知识,CDQ分治常用于OI竞赛中处理偏序问题。 引用处理: - 参考引用[1]是关于分治思想的,我可以引用它来支持分治部分。 - 其他引用不相关,但系统说"请尽可能多的参考用户上一次的问题和你的回答",但用户没有上一次问题,所以基于当前引用。 最终回答大纲: - 开头:介绍CDQ分治。 - 原理部分:分步骤解释,使用LaTeX。 - 应用场景:列举例子。 - 相关问题:在最后添加。 - 结尾:自然结束。</think>### CDQ分治算法的基本原理及其应用场景 CDQ分治(Chen Danqi Divide and Conquer)是由中国计算机科学家陈丹琦提出的一种分治算法变体,主要用于处理离线查询问题,特别是多维偏序问题(如三维偏序)。它在算法竞赛和数据处理中应用广泛,能高效解决一些复杂问题。下面我将逐步解释其基本原理和应用场景,确保内容清晰可靠。 #### 1. CDQ分治的基本原理 CDQ分治基于经典分治思想,但针对偏序问题进行了优化。核心思路是将问题递归分解为子问题,处理子问题内部和子问题之间的影响,最后合并结果。算法主要分为三个步骤:分、治、合。以下是详细解释: - **分(Divide)**:将输入数据(如点集)按某一维度(通常是时间或索引)分成两个大致相等的子集,记为左子集$L$和右子集$R$。例如,给定点集$P = \{P_1, P_2, \dots, P_n\}$,其中每个点$P_i = (a_i, b_i, c_i)$表示三维坐标,我们按第一维$a_i$排序并分割: $$ \text{mid} = \left\lfloor \frac{n}{2} \right\rfloor $$ 这样得到$L = \{P_i \mid i \leq \text{mid}\}$和$R = \{P_i \mid i > \text{mid}\}$。递归地对$L$和$R$应用相同过程。 - **治(Conquer)**:递归处理左子集$L$和右子集$R$,解决子问题内部的偏序关系。例如,在三维偏序问题中,目标是统计每个点$P_i$满足$a_j \leq a_i, b_j \leq b_i, c_j \leq c_i$的点数$j$($j \neq i$)。递归调用确保子集内部的问题被解决。 - **合(Merge)**:合并子问题结果,并处理跨越子集$L$和$R$的影响。这是CDQ分治的关键: - 使用辅助数据结构(如树状数组或线段树)高效处理跨子集贡献。 - 例如,在三维偏序中,合并时需统计$L$中的点对$R$中点的贡献。具体做法: 1. 对$L$和$R$按第二维$b_i$排序。 2. 遍历$R$中的每个点$P_j$,同时维护一个树状数组,用于记录第三维$c_i$的累积值。 3. 对于$P_j$,查询树状数组中满足$c_k \leq c_j$的点数($k$来自$L$),并累加到结果。 这确保了跨子集贡献在$O(n \log n)$时间内完成。 整个算法的时间复杂度为$O(n \log^2 n)$,其中$n$是数据规模。递归公式可表示为: $$ T(n) = 2T\left(\frac{n}{2}\right) + O(n \log n) $$ 其中$O(n \log n)$来自合并步骤的排序和树状数组操作。CDQ分治通过“分而治之”高效处理了偏序关系[^1]。 #### 2. CDQ分治的应用场景 CDQ分治特别适合离线查询问题,其中数据点固定,查询可批量处理。常见应用包括: - **三维偏序问题**:如统计逆序对或点对关系。例如,在竞赛中,给定点集统计每个点“支配”的点数(即所有维度都小于等于该点的点)。CDQ分治能高效解决,时间复杂度优于暴力$O(n^2)$。 - **动态规划优化**:用于优化序列问题,如最长上升子序列(LIS)或斜率优化问题。通过分治处理状态转移,减少计算量。 - **离线查询处理**:在数据库或算法中,处理批量查询,如区间统计或范围查询。CDQ分治将查询排序后递归处理,避免实时开销。 - **其他领域**:在计算几何(如最近点对问题)和机器学习数据预处理中也有应用,但需结合具体算法调整。 CDQ分治的优势在于其通用性和效率,但要求问题具有“可分治性”,即子问题独立且合并步骤可高效实现。实际应用中,常结合树状数组等数据结构提升性能。 #### 相关问题 1. CDQ分治如何处理更高维度的偏序问题(如四维偏序)? 2. CDQ分治与普通分治算法的主要区别是什么? 3. CDQ分治在动态规划优化中的具体实现案例? [^1]: 分治思想的核心是递归分解问题,然后合并结果,这在CDQ分治中得到充分体现,如分割点集并递归处理子问题。 [^2]: 算法理论常参考经典书籍,但CDQ分治更常见于竞赛和算法论文。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值