HDOJ 4249 A Famous Equation DP

本博客探讨了一个涉及缺失数字的数学加法问题,通过解析输入的等式并利用动态规划算法来确定所有可能的解决方案的数量。该问题通过案例输入和输出展示了算法的应用,最终输出了不同可能性的数量。


DP:

DP[len][k][i][j] 再第len位,第一个数len位为i,第二个数len位为j,和的第len位为k

每一位能够从后面一位转移过来,能够进位也能够不进位

A Famous Equation

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 500    Accepted Submission(s): 147


Problem Description
Mr. B writes an addition equation such as 123+321=444 on the blackboard after class. Mr. G removes some of the digits and makes it look like “1?3+??1=44?”. Here “?” denotes removed digits. After Mr. B realizes some digits are missing, he wants to recover them. Unfortunately, there may be more than one way to complete the equation. For example “1?

3+??

1=44?” can be completed to “123+321=444” , “143+301=444” and many other possible solutions. Your job is to determine the number of different possible solutions.

 

Input
Each test case describes a single line with an equation like a+b=c which contains exactly one plus sign “+” and one equal sign “=” with some question mark “?” represent missing digits. You may assume a, b and c are non-negative integers, and the length of each number is no more than 9. In the other words, the equation will contain three integers less than 1,000,000,000.
 

Output
For each test case, display a single line with its case number and the number of possible solutions to recover the equation.
 

Sample Input

   
7+1?=1? ?1+?

1=22

 

Sample Output

   
Case 1: 3 Case 2: 1
Hint
There are three solutions for the first case: 7+10=17, 7+11=18, 7+12=19 There is only one solution for the second case: 11+11=22 Note that 01+21=22 is not a valid solution because extra leading zeros are not allowed.
 

Source
 



#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <stack>

using namespace std;

typedef long long int LL;

char cpp[200];
int a[200],len1,b[200],len2,c[200],len3;
LL dp[20][20][20][20];

int main()
{
    int cas=1;
    while(cin>>cpp)
    {
        len1=len2=len3=0;
        memset(a,0,sizeof(a));
        memset(b,0,sizeof(b));
        memset(c,0,sizeof(c));
        int n=strlen(cpp);
        int i; stack<char> stk;
        for(i=0;i<n;i++)
        {
            if(cpp[i]=='+')
            {
                while(!stk.empty())
                {
                    char c=stk.top(); stk.pop();
                    if(c!='?

') a[len1++]=c-'0'; else a[len1++]=-1; } i++; break; } stk.push(cpp[i]); } for(;i<n;i++) { if(cpp[i]=='=') { while(!stk.empty()) { char c=stk.top(); stk.pop(); if(c!='?

') b[len2++]=c-'0'; else b[len2++]=-1; } i++; break; } stk.push(cpp[i]); } for(;i<n;i++) stk.push(cpp[i]); while(!stk.empty()) { char cc=stk.top(); stk.pop(); if(cc!='?') c[len3++]=cc-'0'; else c[len3++]=-1; } for(int i=len1-1;i>0;i--) if(a[i]==0) len1--; else break; for(int i=len2-1;i>0;i--) if(b[i]==0) len2--; else break; for(int i=len3-1;i>0;i--) if(c[i]==0) len3--; else break; memset(dp,0,sizeof(dp)); ///len==0 for(int i=0;i<=9;i++) { if(a[0]==-1||a[0]==i) for(int j=0;j<=9;j++) { if(b[0]==-1||b[0]==j) for(int k=0;k<=9;k++) if(c[0]==-1||c[0]==k) { if(k==(i+j)%10) dp[0][k][i][j]=1; } } } ///len=1... for(int len=1;len<len3;len++) { for(int i=0;i<=9;i++) { if(len==len1-1&&i==0) continue; if(len>=len1&&i!=0) continue; if(a[len]==-1||a[len]==i) for(int j=0;j<=9;j++) { if(len==len2-1&&j==0) continue; if(len>=len2&&j!=0) continue; if(b[len]==-1||b[len]==j) for(int k=0;k<=9;k++) { if(len==len3-1&&k==0) continue; if(((i+j)%10!=k)&&((i+j+1)%10!=k)) continue; if(c[len]==-1||c[len]==k) { ///没有进位 if((i+j)%10==k) { for(int ii=0;ii<=9;ii++) for(int jj=0;jj<=9;jj++) for(int kk=0;kk<=9;kk++) { if((ii+jj==kk)||(ii+jj+1==kk)) dp[len][k][i][j]+=dp[len-1][kk][ii][jj]; } } ///有进位 if((i+j+1)%10==k) { for(int ii=0;ii<=9;ii++) for(int jj=0;jj<=9;jj++) for(int kk=0;kk<=9;kk++) { if(((ii+jj>=10)&&(ii+jj)%10==kk)||((ii+jj+1>=10)&&(ii+jj+1)%10==kk)) dp[len][k][i][j]+=dp[len-1][kk][ii][jj]; } } } } } } } LL ans=0; int mx=max(len1,max(len2,len3)); for(int i=0;i<=9;i++) for(int j=0;j<=9;j++) for(int k=0;k<=9;k++) if((i+j==k)||(i+j+1==k)) { if(mx==1&&i+j!=k) continue; ans+=dp[mx-1][k][i][j]; } cout<<"Case "<<cas++<<": "<<ans<<endl; memset(cpp,0,sizeof(cpp)); } return 0; }




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值