个推用户画像的实践与应用

用户画像构建与应用

“以用户为核心”的概念在互联网时代深入人心,然而要真正了解用户懂得用户,就不得不提到“用户画像”。 随着大数据技术的深入研究与应用,借助用户画像,企业或APP可以深入挖掘用户需求,从而实现精细化运营以及为精准营销打下坚实基础。本文将重点介绍何为用户画像,用户画像的构建流程以及应用场景。


用户画像,本质是数据能力的体现

用户画像,即用户信息的标签化,而从本质上来说,用户画像是数据的标签化。常见的用户画像体系有三种:结构化体系、非结构化体系和半结构化体系。非结构化体系没有明显的层级,较为独立。半结构化层次有一定的层级概念,但是没有过于严格的依赖关系。结构化体系有较强的层级结构。以一个简单的三级结构化标签为例,一级标签有基本属性和兴趣偏好,并且由此可以延伸至二级标签和三级标签,具体到不同的属性和兴趣爱好。

在互联网、电商领域,用户画像常用来作为精准营销、推荐系统的基础性工作,其作用总体包括:

(1)精准营销:根据历史用户特征,运营人员可以分析产品的潜在用户和用户的潜在需求,继而通过相应的手段,针对特定群体进行营销。

(2)用户分析:根据用户的属性、行为特征对用户进行分类后,可以统计不同特征下的用户数量、分布,分析不同用户画像群体的分布特征。

(3)数据挖掘:以用户画像为基础,开发人员可以构建推荐系统、搜索引擎、广告投放系统,提升服务精准度。

(4)服务产品:描绘产品的用户画像,对产品进行受众分析,更透彻地理解用户使用产品的心理动机和行为习惯,完善产品运营,提升服务质量。

(5)行业报告&用户研究:通过用户画像分析可以使运营人员更加了解行业动态,比如人群消费习惯、消费偏好分析、不同地域品类消费差异分析等。

个推用户画像的实践

个推依托多年推送服务的积累和强大的大数据分析能力,推出了个推画像SDK(个像),为APP开发者提供丰富的用户画像数据以及实时的场景识别能力。

个推独有的冷、热、温数据标签,可以有效分析用户的线上线下行为,深入挖掘用户特征,助力APP运营者全面了解用户属性。其中,“冷数据”是指用户的基础属性,改变的概率较小,如性别、年龄层次等;“温数据”则可以回溯用户近期活跃的应用和场景,具有一定的时效性;“热数据”是指用户当下的场景及实时的用户行为,帮助APP运营者抓住稍纵即逝的营销机会。

个推不仅拥有丰富的通用标签体系,还可以根据客户特定的需求联合建模,输出定制化的标签,以满足APP在不同场景需求下的运营。

规范画像构建流程

用户画像的构建需要技术和业务人员的共同参与,以避免形式化的用户画像。个推也有一些做法可供开发者们进行参考。

(1)标签体系设计。开发者需要先了解自身的数据,确定需要设计的标签形式。

(2)基础数据收集、多数据源数据融合。个推在构建用户画像时,会整合个推以及该APP自身的数据。

(3)实现用户统一标识。多数情况下,APP的众多用户分布于不同的账号体系中,个推会将其统一标识。

(4)用户画像特征层构建。即将每一个数据进行特征化。

(5)画像标签规则+算法建模。两者缺一不可,在实际的应用中,算法难以解决的问题,利用简单的规则也可以达到很好的效果。

(6)利用算法对所有用户打标签

(7)画像质量监控。在实际的应用中,用户画像会产生一定的波动,为了解决这个问题,个推搭建了相应的监控系统,对画像的质量进行监控。

个推用户画像构建的整体流程,可以分为三个部分,第一,基础数据处理。基础数据包括用户设备信息、用户的线上APP偏好以及线下场景数据等。

第二,画像中间数据处理。处理结果包括线上APP偏好特征和线下场景特征等。

第三,画像信息表。表中应有四种信息:设备基础属性;用户基础画像,包括用户的性别、年龄层次、相关消费水平等;用户兴趣画像,即用户更有兴趣的方向,如用户更偏好比价类APP还是海淘类APP;用户其它画像等。

在个推用户画像构建的过程中,机器学习占据了较为重要的位置。机器学习主要是海量数据持续更新、数据清洗、数据存储的过程。个推更多地利用机器学习平台进行相应的预测分析、模型输出等。

画像质量的关注有两个重点,第一,如何优化质量。个推会对用户画像的模型定期地进行修改和优化。第二,关注画像质量波动情况,对异常变化及时预警。

个推用户画像应用

个推画像SDK的集成,可以丰富APP的用户分析维度,其主要应用体现在两方面:第一,精准推荐,APP的运营者可以通过个像提供的性别、年龄层次、兴趣爱好、场景等丰富标签,为不同的用户推荐不同的内容,以达到更加精细化的运营,并提升用户活跃度和留存率。

第二,用户聚类,个推可以帮助APP处理用户数据,补全用户画像,建立用户的聚类模型。同时,通过用户特征分析,个推还能够将APP的老用户映射到某一聚类,以此产出APP的目标聚类,最终助力APP运营者针对不同用户群体制定更加精准的运营策略。


“千万人撩你,不如一人懂你”,当互联网逐渐步入大数据时代,APP只有真正地了解用户,才能得到用户并留住用户。基于个推完备的大数据计算架构,个推画像SDK的接入,不仅可以帮助开发人员提高开发决策的效率,也可以帮助APP运营人员开展精细化运营,从而提升企业的营销效率和市场竞争力。

转载于:https://my.oschina.net/u/1782938/blog/3007030

用户画像,作为一种勾画目标用户、联系用户诉求设计方向的有效工具,用户画像在各领域得到了广泛的应用用户画像最初是在电商领域得到应用的,在大数据时代背景下,用户信息充斥在网络中,将用户的每个具体信息抽象成标签,利用这些标签将用户形象具体化,从而为用户提供有针对性的服务。还记得年底收到的支付宝年度消费账单吗?帮助客户回顾一年的消费细节,包括消费能力、消费去向、信用额度等等,再根据每位客户的消费习惯,量身定制商品荐列表……这一活动,将数据这个量化的词以形象生动的表现手法到了大众面前。这就是用户画像在电商领域的一个应用,随着我国电子商务的高速发展,越来越多的人注意到数据信息对于电商市场的动作用。基于数据分析的精准营销方式,可以最大限度的挖掘并留住潜在客户,数据统计分析为电商市场带来的突破不可估量。在大数据时代,一切皆可“量化”,看似普通的小小数字背后,蕴藏着无限商机,也正在被越来越多的企业所洞悉。如何从大数据中挖掘商机?建立用户画像和精准化分析是关键。什么是用户画像呢?用户画像是根据市场研究和数据,创建的理想中客户虚构的表示。创建用户画像,这将有助于理解现实生活中的目标受众。企业创建的人物角色画像,具体到针对他们的目标和需求,并解决他们的问题,同时,这将帮助企业更加直观的转化客户。用户画像最重要的一个步骤就是对用户标签化,我们要明确要分析用户的各种维度,才能确定如何对用户进行画像用户画像建立步骤首先,基础数据收集,电商领域大致分为行为数据、内容偏好数据、交易数据,如浏览量、访问时长、家具偏好、回头率等等。而金融领域又有贷款信息,信用卡,各种征信信息等等。然后,当我们对用户画像所需要的基础数据收集完毕后,需要对这些资料进行分析和加工,提炼关键要素,构建可视化模型。对收集到的数据进行行为建模,抽象出用户的标签。电商领域可能是把用户的基本属性、购买能力、行为特征、兴趣爱好、心理特征、社交网络大致的标签化,而金融风控领域则是更关注用户的基本信息,风险信息,财务信息等等。随后,要利用大数据的整体架构对标签化的过程进行开发实现,对数据进行加工,将标签管理化。同时将标签计算的结果进行计算。这个过程中需要依靠Hive,Hbase等大数据技术,为了提高数据的实时性,还要用到Flink,Kafka等实时计算技术。最后,也是最关键的一步,要将我们的计算结果,数据,接口等等,形成服务。比如,图表展示,可视化展示。基于Flink+Alink构建全端亿级实时用户画像系统课程,将带领大家一步一步实现一个强大的实时用户画像系统,该系统以热门的互联网电商实际业务应用场景为案例讲解,具体包含:标签管理(支持动态标签扩展,动态标签指标)、用户预测、用户群体画像用户行为画像用户中心、几大内容。本课程采用全新的大数据技术栈:Flink+Alink,让你体验到全新技术栈的强大,感受时代变化的气息,通过学习完本课程可以节省你摸索的时间,节省企业成本,提高企业开发效率。本课程包含的技术: 开发工具为:IDEA、WebStorm Flink1.13.0Alink1.5.0 ClickHouseDolphinSchedulerHadoopHbaseKafkaZookeeper SpringBoot2.0.8.RELEASE SpringCloud Finchley.SR2BinlogCanal MySQL MybatisVue.js、Nodejs、ElementUI 课程亮点: 1.企业接轨、真实工业界产品2.标签化管理模块功能,支持动态标签扩展3.动态标签指标分析和维护4.Alink算法技术框架 5.大数据热门技术Flink新版本 6.主流微服务后端系统 7.数据库实时同步解决方案 8.涵盖主流前端技术VUE+NodeJS+ElementUI 9.集成SpringCloud实现统一整合方案 10.互联网大数据企业热门技术栈 11.支持海量数据的实时画像 12.支持全端实时画像 13.全程代码实操,提供全部代码和资料 14.提供答疑和提供企业技术方案咨询 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值