HDOJ 1016 Prime Ring Problem (素数环问题)

本文介绍了一个关于构造由自然数组成的环形结构的问题,其中每个相邻节点的和必须为素数。通过使用递归回溯算法,文章提供了一种解决方案来生成所有可能满足条件的环形序列,并按字典序输出。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Problem Description
A ring is compose of n circles as shown in diagram. Put natural number 1, 2, ..., n into each circle separately, and the sum of numbers in two adjacent circles should be a prime.

Note: the number of first circle should always be 1.

 

 

Input
n (0 < n < 20).
 

 

Output
The output format is shown as sample below. Each row represents a series of circle numbers in the ring beginning from 1 clockwisely and anticlockwisely. The order of numbers must satisfy the above requirements. Print solutions in lexicographical order.

You are to write a program that completes above process.

Print a blank line after each case.
 
Sample Input
6 8
 
Sample Output
Case 1:
1 4 3 2 5 6
1 6 5 2 3 4
Case 2:
1 2 3 8 5 6 7 4
1 2 5 8 3 4 7 6
1 4 7 6 5 8 3 2
1 6 7 4 3 8 5 2
 
#include <iostream>
#include <cmath>
#include <cstring>
using namespace std;
int sushu[50];
int a[20],vis[20];

int check(int n)
{
int t=sqrt(n);
for(int i=2;i<=t;i++)  //小于等于开房数 
   { if(n%i==0) 
        return 0;
   }
return 1;   
}

void dp(int m,int k)  //k相当于步骤 
{
    if(k==m)          //k=m-1时也要算,加一 
      {
        if(sushu[a[m-1]+a[0]])
          {
              cout<<1;
            for(int i=1;i<m;i++)
                  cout<<' '<<a[i];
              cout<<endl;
          }    
        return;
      }
    for(int i=2;i<=m;i++)
       {
             if(!vis[i]&&sushu[a[k-1]+i])
                {
                a[k]=i;
                vis[i]=1;//三者顺序不能改
                dp(m,k+1);
                vis[i]=0; //不可放在括号外面 
             }
          
       }
}


int main()
{
a[0]=1;
memset(sushu,0,sizeof(sushu));
memset(vis,0,sizeof(vis));
for(int i=1;i<=32;i++)
   {
       sushu[i]=check(i);
   }
int n;
int num=0;
while(cin>>n)
    {
        num++;
        printf("Case %d:\n",num);
        dp(n,1);
        cout<<endl;
    }
return 0; 
}

 

转载于:https://www.cnblogs.com/biggan/p/7457789.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值