Python3基础笔记---re模块

本文介绍了Python中正则表达式的使用方法,包括各种通配符、贪婪匹配、字符集等概念的应用实例,并展示了如何利用正则表达式进行字符串模式匹配。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

参考博客: Py西游攻关之模块

就其本质而言,正则表达式(或 RE)是一种小型的、高度专业化的编程语言,(在Python中)它内嵌在Python中,并通过 re 模块实现。正则表达式模式被编译成一系列的字节码,然后由用 C 编写的匹配引擎执行。

import re

# # .  通配符,一个  .  模糊匹配一个除换行符之外的任意字符
# ret = re.findall('a..in', 'helloalvin')
# print(ret)  # ['alvin']
#
# # ^ 必须以某个字符开始
# ret = re.findall('^a...n', 'alvinhelloawwwn')
# print(ret)  # ['alvin']
#
# # $ 必须以某个字符结尾
# ret = re.findall('a...n$', 'alvinhelloawwwn')
# print(ret)  # ['awwwn']
#
# # * 贪婪匹配 [0, +oo]
# ret = re.findall('abc*', 'abcccc')  # 贪婪匹配[0,+oo]
# print(ret)  # ['abcccc']
#
# ret = re.findall('a.*n', 'alvinhelloawwwn')
# print(ret)  #  ['alvinhelloawwwn']  贪婪匹配
#
# # + 贪婪匹配 [1, +oo]
# ret = re.findall('abc+', 'abccc')  # [1,+oo]
# print(ret)  # ['abccc']
#
# ret = re.findall('a.+n', 'alvinhelloawwwn')
# print(ret)  # ['alvinhelloawwwn'] 贪婪匹配
#
# # ? 匹配[0,1]
# ret = re.findall('abc?', 'abcccffab')  # [0,1]
# print(ret)  # ['abc', 'ab']
#
# {} 自定义重复次数 {1,} 表示一到正无穷
ret = re.findall('abc{1,4}', 'abcccccsccccc')
print(ret)  # ['abcccc'] 贪婪匹配

# --------------------------------------------字符集[]


# ret = re.findall('a[bc]d', 'acd')
# print(ret)  # ['acd'] 匹配 b 或 c
#
# ret = re.findall('[a-z]', 'acd')
# print(ret)  # ['a', 'c', 'd']
#
# ret = re.findall('[.*+]', 'a.cd+')
# print(ret)  # ['.', '+']  # 在[]中,* + 失去原有的作用
#
# 在字符集里有功能的符号: - ^ \
#
# ret = re.findall('[1-9]', '45dha3')
# print(ret)  # ['4', '5', '3']
#
# ^ 放在[]表示取反,不取 a 或 b 或 ,
# ret = re.findall('[^ab,]', '45bdha3,')
# print(ret)  # ['4', '5', 'd', 'h', '3']
#
# ret = re.findall('[\d]', '45bdha3')
# print(ret)  # ['4', '5', '3']

# \ 的功能
# 1、反斜杠后面跟元字符去除其特殊功能
# 2、反斜杠后面跟普通字符实现其特殊功能
'''
\d 相当于 [0-9]
\D 相当于 [^0-9]
\s 匹配任何空白字符
\S 匹配任何非空字符
\w 匹配任何字母数字字符  [0-9a-zA-Z]
\W 匹配任何非字母数字字符  [^0-9a-zA-Z]
\b 匹配一个特殊字符边界,也就是指单词和空格间的位置
'''
# ret=re.findall('I\b','I ')
# print(ret)#[]

ret = re.findall('\dert','13ert')
print(ret)      # ['3ert']

ret = re.findall('\Dert','13^ert')
print(ret)      # ['^ert']

ret = re.findall('\s123', ' 123')
print(ret)

print(re.findall(r'I\b', 'hello,I am a hhI$hh'))
print(re.findall(r'\bI', 'hello, I am a hhI$hh'))



print(re.findall(r'\\', r'abf\vaf'))

 

转载于:https://www.cnblogs.com/panlei3707/p/8575550.html

<think>好的,我现在要处理用户关于Android 12中RKNN开发配置和使用教程的问题。首先,我需要回顾用户提供的引用内容,看看是否有相关的信息。 用户提供了三个引用。引用1提到了RKNN Model Zoo和RKNN Toolkit2的环境配置,包括安装Miniconda3。引用2是关于系统镜像下载,特别是Ubuntu 22.04版本和导出ONNX模型。引用3讨论了RV1808/1126使用RKNN作为MediaPipe推理后端的步骤,包括配置参数如use_rga、use_mmap和data_type的设置,以及反量化的处理。 用户的问题集中在Android 12上,所以需要将引用中的信息与Android系统关联起来。引用3提到了MediaPipe和RKNN的集成,这可能适用于Android开发,但需要确认是否支持Android 12。此外,RKNN Toolkit2的环境配置可能在不同平台上有所不同,用户可能需要针对Android进行调整。 接下来,我需要考虑Android开发中RKNN的一般步骤,比如环境准备、模型转换、集成到Android应用、配置参数和性能优化。结合引用中的信息,模型转换部分可以参考引用2提到的导出ONNX模型,然后使用RKNN Toolkit转换为RKNN格式。引用3中的配置参数(如use_rga、use_mmap、data_type)可能在Android中同样适用,但需要查阅相关文档确认。 可能还需要指导用户如何将RKNN库集成到Android项目中,比如添加依赖项或NDK配置。此外,性能优化方面,引用3提到的反量化处理可能需要特别注意,尤其是在Android设备上的实现。 最后,确保回答结构清晰,分步骤说明,并引用提供的资料。需要验证引用中的信息是否适用于Android 12,例如系统镜像是否支持,或者是否有特定版本的要求。如果某些步骤在引用中没有明确说明,可能需要提示用户参考官方文档或社区资源。</think>### Android 12 RKNN 开发配置与使用教程 #### 1. **环境准备** - **系统镜像与工具链**: 根据引用[2],建议使用Ubuntu 22.04作为开发环境,并下载Orange Pi 5 Pro等支持RKNN的硬件镜像。对于Android 12开发,需确保RKNN Toolkit2适配Android NDK版本(推荐NDK 21+)[^2]。 - **安装RKNN Toolkit2**: 参考引用[1],通过Miniconda3配置Python环境(建议Python 3.8),并安装RKNN Toolkit2以支持模型转换与推理。命令示例: ```bash pip install rknn_toolkit2 ``` #### 2. **模型转换(ONNX转RKNN)** - **导出ONNX模型**: 使用PyTorch或TensorFlow等框架导出模型为ONNX格式(引用[2])。 - **转换为RKNN格式**: 编写RKNN配置文件(`config.yml`),指定输入尺寸、量化方式等参数。示例代码: ```python from rknn.api import RKNN rknn = RKNN() rknn.config(target_platform='rk3568', mean_values=[[127.5]], std_values=[[127.5]]) rknn.load_onnx(model="model.onnx") rknn.build(do_quantization=True, dataset="dataset.txt") rknn.export_rknn("model.rknn") ``` #### 3. **Android项目集成** - **添加RKNN库依赖**: 将编译好的RKNN动态库(`librknnrt.so`)和模型文件(`model.rknn`)放入Android项目的`jniLibs`目录。 - **JNI接口开发**: 通过JNI调用RKNN的C/C++ API实现推理。关键配置参考引用[3]: ```cpp #include <rknn/rknn_runtime.h> rknn_context ctx; int ret = rknn_init(&ctx, model_path, 0, 0, nullptr); ret = rknn_inputs_set(ctx, input_num, input_attrs); ret = rknn_run(ctx, nullptr); ret = rknn_outputs_get(ctx, output_num, output_attrs, nullptr); ``` #### 4. **关键配置参数** - **use_rga与use_mmap**: 根据引用[3],若Android设备不支持硬件加速(如RGA),需将`use_rga`和`use_mmap`设为`false`。 - **数据量化类型**: `data_type`可选`uint8`或`fp32`。若选`uint8`,需手动实现反量化;若选`fp32`,RKNN会自动处理[^3]。 #### 5. **性能优化** - **多线程推理**: 利用Android的`ThreadPoolExecutor`并行处理输入数据。 - **内存优化**: 启用`use_mmap`(若支持)减少内存拷贝开销,或通过零拷贝技术直接操作物理内存。 #### 6. **调试与验证** - **日志输出**: 启用RKNN的调试模式(`RKNN_LOG_LEVEL=DEBUG`)查看详细运行信息。 - **性能分析**: 使用`rknn.query(RKNN_QUERY_PERF_DETAIL)`获取各层耗时,针对性优化模型结构。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值