背景介绍
最近实验室在搞基于微透镜阵列的光场相机,很时髦的玩意,可以先拍照然后对焦,可以说重新定义了摄影,但很可惜,国外已经研究的比较成熟了,基本理论,也就是光场技术,在1996年由斯坦福的Marc Levoy等人提出,采集光场的手段主要有两种,一种是通过微透镜阵列,这样不但能记录光线的强度信息,还能记录光线的角度信息,另外一种是通过相机阵列技术。前者已经由RenNG成功商业化成Lytro光场相机,后者嘛,还停留在实验室阶段→_→,不过由相机阵列引发出的合成口径成像技术,很是牛逼,号称能看清楚被遮挡物体的表面,于是呢,我就调研了一下多相机阵列的国内外研究的情况。下面的这些内容基本上是我写给老板的调研报告,为了便于大家理解,我放了很多图,但毕竟是综述类的报告,有点文绉绉的说教语气,木有办法,凑合着看呗~
我看相机阵列
多相机阵列(Camera Arrays)利用不同空间位置的多个相机来采集不同视角的照片。斯坦福大学的Bennett Wilburn等人[1]用廉价的相机搭建一个高性能的相机阵列(图1)。这个系统使用常规的MPEG视频压缩标准以及IEEE1394通信标准,使得100台CMOS相机协同工作,而所有相机所产生的数据仅需要4台普通的PC处理即可。
图 1 斯坦福大学搭建的高性能相机阵列
多相机阵列各子相机之间的距离不同,整个相机阵列就有不同的用途。当所有的子相机之间的距离比较小时,也就是相机紧挨着放在一起,这时整个相机阵列可以看作一个单中心投影相机(Single-Center-of-Projection Camera)。这时整个相机阵列可以用来产生超分辨率、高信噪比、高动态范围的照片。从图3中可以看到,通过对不同子相机采用不同的曝光时间,我们得到了比所有相机都采用相同曝光时间(图2)更加广的动态范围[1]。另外,当监控相机在夜晚工作时,由于光线不足,相机往往需要使用大光圈,然后大光圈带来的一个弊端是使图片的景深急剧减小,而相机阵列可以克服大光圈带来景深小的问题[2](图4-图6)。
图 2所有相机相同曝光时间 |
图 3所有相机设置不同曝光时间 |
图 4对焦点在近处 |
图 5对焦点在远处 |