kNN算法实例(约会对象喜好预测和手写识别)

博客展示了约会预测和手写识别的运行结果,还提及测试数据,代码参考《机器学习实战》,并给出转载链接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import numpy as np
import operator
import random
import os

def file2matrix(filePath):#从文本中提取特征矩阵和标签
    f = open(filePath,'r+').readlines()
    fileLength = len(f)
    dataSet = np.zeros((fileLength,3),np.float64)
    labelList = []
    for i in range(fileLength):
        row = f[i].split('\t')
        dataSet[i,:] = row[0:3]
        labelList.append(row[-1].strip('\n'))
    return dataSet,labelList

def autoNormal(data):#归一化处理
    dataShape = data.shape
    dataMin = data.min(0)
    dataMax = data.max(0)
    normalDataSet = np.zeros(dataShape,np.float64)
    diff = dataMax - dataMin
    normalDataSet = (data -np.tile(dataMin,(dataShape[0],1)))/np.tile(diff,(dataShape[0],1))
    return normalDataSet,diff,dataMin

def dataClassTest(dataSet,labelList):#测试算法准确率
    ratio = 0.1
    correntCount = 0
    testNumber = int(ratio*dataSet.shape[0])
    for i in range(testNumber):
        k = random.randint(0, dataSet.shape[0])
        label = classify0(dataSet[k],dataSet,labelList,20)
        if label == labelList[k]:
            correntCount += 1
    return correntCount*100/testNumber

def classifyPerson():#输入数据进行预测
    dataSet,labelSet = file2matrix('datingTestSet.txt')
    percentTats = float(input('Please input percentage of time spend playing video games?'))
    miles = float(input('Please input frequent flier miles earned per year?'))
    cream = float(input('Please input liters of ice cream consumed per year?'))
    dataSet,diff,dataMin = autoNormal(dataSet)
    intX = np.array([percentTats,miles,cream],np.float64)

    label = classify0((intX-dataMin)/diff,dataSet,labelSet,20)
    print("You likely {0} the man!".format(label))

    correntPercent = dataClassTest(dataSet,labelSet)
    print("The estimate corrent percent is {0}%!".format(correntPercent))

def classify0(intX,dataSet,labelSet,k):#kNN分类算法
    intX = np.tile(intX,(dataSet.shape[0],1))
    square = (intX - dataSet)**2
    sum = square.sum(axis=1)
    sqrt = sum**0.5
    sortedDistIndicies = sqrt.argsort()
    classCount={}
    for i in range(k):
        label = labelSet[sortedDistIndicies[i]]
        classCount[label] = classCount.get(label,0)+1
    sortedClassCount = sorted(classCount.items(),key=operator.itemgetter(1),reverse=True)

    return sortedClassCount[0][0]

def img2vector(filename):#将32*32图片转换成1*1024向量
    vector = np.zeros((1,1024))
    f = open(filename)
    for i in range(32):
        fr = f.readline()
        for j in range(32):
            vector[0,32*i+j] = int(fr[j])
    return vector

def handwritingClassTest():
    filenameList = os.listdir(r'machinelearninginaction\Ch02\digits\trainingDigits')
    m = len(filenameList)
    trainLabelList = []
    trainDataMatrix = np.zeros((m,1024))
    for i in range(m):
        trainLabelList.append(int(filenameList[i].strip('_')[0]))
        trainDataMatrix[i,:] = img2vector(r'machinelearninginaction\Ch02\digits\trainingDigits\{0}'.format(filenameList[i]))
    filenameList = os.listdir(r'machinelearninginaction\Ch02\digits\testDigits')
    m = len(filenameList)
    corrent = 0.0
    for i in range(m):
        testLabel = int(filenameList[i].strip('_')[0])
        testIn = img2vector(r'machinelearninginaction\Ch02\digits\testDigits\{0}'.format(filenameList[i]))
        testOut = classify0(testIn,trainDataMatrix,trainLabelList,3)
        if testOut == testLabel:
            corrent += 1
        else:
            print("Error:the classifier came back with:{0}, the real answer is:{1}。".format(testOut,testLabel))
    print("the corrent percent is:%.2f %%。"%(corrent*100/m))
if __name__ == '__main__':
    classifyPerson() #约会预测
    #handwritingClassTest() #手写识别

约会预测运行结果:

Please input percentage of time spend playing video games?100
Please input frequent flier miles earned per year?8
Please input liters of ice cream consumed per year?200
You likely didntLike the man!
The estimate corrent percent is 96.0%!

进程已结束,退出代码 0

手写识别运行结果:

Error:the classifier came back with:7, the real answer is:1。
Error:the classifier came back with:9, the real answer is:3。
Error:the classifier came back with:3, the real answer is:5。
Error:the classifier came back with:6, the real answer is:5。
Error:the classifier came back with:6, the real answer is:8。
Error:the classifier came back with:3, the real answer is:8。
Error:the classifier came back with:1, the real answer is:8。
Error:the classifier came back with:1, the real answer is:8。
Error:the classifier came back with:1, the real answer is:9。
Error:the classifier came back with:7, the real answer is:9。
the corrent percent is:98.94 %。

进程已结束,退出代码 0

测试数据:

 

 说明:代码参考《机器学习实战》

转载于:https://www.cnblogs.com/xuxiaowen1990/p/11063432.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值