因变量 方差膨胀系数_如何理解方差膨胀因子(Variance Inflation Factor,VIF)?

方差膨胀因子(VIF)是衡量多元线性回归中多重共线性的指标,它与皮尔逊相关系数矩阵有关。VIF可以通过计算相关系数矩阵的行列式来确定,与每个变量的复相关系数有关。高VIF值表明变量间存在高度相关性,可能影响回归模型的稳定性。证明过程涉及最小二乘解、残差平方和与相关系数矩阵的关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

OLS方差膨胀因子的标准定义为:

其中,

为第i个变量

与其他全部变量

(

)的复相关系数,所谓复相关系数即可决系数

的算术平方根,也即拟合优度的算术平方根。不过这个可决系数

是指用

做因变量,对其他全部

(

)做一个新的回归以后得到的可决系数。

当然这些都是网上随便搜就有的结果,本不值得我重新再写一边。但是经过本人推导,方差膨胀因子确实跟皮尔逊相关系数(矩阵)有关系。

首先什么是皮尔逊相关系数矩阵?

大家对这个东西估计是不陌生,这本身就是一个矩阵,不过这是下三角矩阵。把下三角矩阵填满,形成一个对

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值